

V19.0.x Rev. A
February 2021

ARINC664 / AFDX

Programmer‘s

Guide

C/C++ based Application
Programming Interface

ARINC664 / AFDX Programmer’s Guide ii

ARINC664 / AFDX

C/C++ based Application
Programming Interface

V19.0.x Rev. A
February 2021

AIM NO.
60-15900-37-19.0.X

Programmer‘s

Guide

ARINC664 / AFDX Programmer’s Guide iii

AIM – Gesellschaft für angewandte Informatik und Mikroelektronik mbH

AIM GmbH
Sasbacher Str. 2
D-79111 Freiburg / Germany
Phone +49 (0)761 4 52 29-0
Fax +49 (0)761 4 52 29-33
sales@aim-online.com

AIM UK Office
Cressex Enterprise Centre, Lincoln Rd.
High Wycombe, Bucks. HP12 3RB / UK
Phone +44 (0)1494-446844
Fax +44 (0)1494-449324
salesuk@aim-online.com

 AIM GmbH – Munich Sales Office
Terofalstr. 23a
D-80689 München / Germany
Phone +49 (0)89 70 92 92-92
Fax +49 (0)89 70 92 92-94
salesgermany@aim-online.com

AIM USA LLC
Seven Neshaminy Interplex
Suite 211 Trevose, PA 19053
Phone 267-982-2600
Fax 215-645-1580
salesusa@aim-online.com

© AIM GmbH 2021

Notice: The information that is provided in this document is believed to be accurate.
No responsibility is assumed by AIM GmbH for its use. No license or rights are
granted by implication in connection therewith. Specifications are subject to change
without notice.

mailto:sales@aim-online.com
mailto:salesuk@aim-online.com
mailto:salesgermany@aim-online.com
mailto:salesusa@aim-online.com

ARINC664 / AFDX Programmer’s Guide iv

THIS PAGE IS INTENTIONALLY LEFT BLANK

ARINC664 / AFDX Programmer’s Guide v

TABLE OF CONTENTS

Section Title

Page

1 Introduction .. 1

1.1 General ... 1
1.2 How This Programmer's Guide is Organized ... 1

1.3 Conventions Used ... 3
1.3.1 General Documentation Conventions .. 3
1.3.2 Parameter Naming Conventions .. 3

1.4 AIM Document Family .. 5
2 AFDX Network Overview ... 7

2.1 AFDX Network Structure .. 8
2.2 AFDX Protocol Stack ... 13

2.3 AFDX Frame Format ... 15

3 AFDX Overview .. 19

3.1 AFDX Functional Overview .. 21
3.1.1 AFDX Traffic Generation .. 21

3.1.2 AFDX Receive / Monitor Operation.. 23
3.2 AFDX Software Overview ... 26

3.2.1 AFDX Software Architecture .. 26
3.2.2 AFDX Board Support Package .. 29
3.2.3 Creating a New Microsoft Visual C/C++ Application Program 30

4 Programming using the api library ... 35

4.1 Library Administration and System Programming .. 42
4.1.1 Initialization, Login, and Board Setup ... 42

4.1.2 Getting AIM Board Status and Configuration Information 48
4.1.3 Utilizing IRIG-B .. 49

4.1.4 Interrupt Handling .. 50

4.2 Transmitter Programming .. 54

4.2.1 Global Transmitter Functions .. 56
4.2.2 UDP Port-Oriented Simulation Mode .. 62
4.2.3 Generic Transmit Mode ... 72
4.2.4 Replay Transmit Mode .. 79
4.3 Receiver Programming ... 81

4.3.1 Global Receiver Functions ... 83
4.3.2 VL-Oriented Receive Mode ... 89
4.3.3 Chronological Monitor Receive Mode .. 100
5 Program SampleS ... 119

5.1 Program Samples Overview ... 120

5.2 Program Sample Code .. 122
5.2.1 UDP-Port Oriented Transmission/VL-Oriented Monitor Storage 122
5.2.2 Generic Transmission/Chronological Monitor Reception Sample 140
5.3 API S/W Library Function Calls vs. Program Samples 159

ARINC664 / AFDX Programmer’s Guide vi

6 NOTES ... 163

6.1 Acronyms and Abbreviations ... 163

6.2 Definition of Terms .. 165
7 API S/W LIBRARY INDEX .. 167

ARINC664 / AFDX Programmer’s Guide vii

LIST OF FIGURES

Figure Title Page

Figure 2-1 AFDX Network Topology ... 8

Figure 2-2 Virtual Link Scenario .. 9

Figure 2-3 Bandwidth Allocation Gap (BAG) .. 10

Figure 2-4 Maximum Jitter Window ... 10
Figure 2-5 Sub-VL Round Robin Scheduling ... 11
Figure 2-6 Redundancy Management ... 12
Figure 2-7 Redundancy Management & Integrity Checking on a Receive End-System 12
Figure 2-8 AFDX Protocol Stack .. 13

Figure 2-9 AFDXComm and SAP UDP Ports .. 14
Figure 2-10 AFDX Frame Structure ... 15
Figure 2-11 MAC Header ... 16
Figure 2-12 IP Header ... 17

Figure 2-13 UDP Header... 18
Figure 2-14 AFDX Payload and Sequence Number ... 18

Figure 3-1 FDX Bus Interface Card Application Scenarios ... 20
Figure 3-2 Host/Target Software Interface Diagram .. 27

Figure 3-3 DLL and Program Interfaces ... 28
Figure 3-4 API S/W Library Header Files .. 30
Figure 4-1 Basic Application Program Structure .. 40

Figure 4-2 Interrupt Setup Process .. 53
Figure 4-4 Redundant Network Frame Transmission Options ... 70

Figure 4-5 Packet Group Wait Time & Interframe Gap ... 76
Figure 4-6 AFDX Comm Port Message Buffer Layout .. 96
Figure 4-7 SAP Port Message Buffer Layout ... 98
Figure 4-8 TCB Evaluation Process .. 109

Figure 4-10 Capture States .. 115
Figure 5-1 afdx_Sample.exe User Interface .. 121

ARINC664 / AFDX Programmer’s Guide viii

LIST OF TABLES
Table Title Page

Table 1-1 API S/W Library Data Type Naming Conventions .. 4
Table 3-1 Transmission Mode Key Features .. 22
Table 3-2 Reception Mode Key Features .. 24

Table 3-3 Compatible Operating Systems / Compilers ... 26

Table 4-1 Library Administration Functions .. 36

Table 4-2 Target Independent Administration Functions ... 37
Table 4-3 System Functions .. 37
Table 4-4 Transmitter Functions ... 38
Table 4-5 Receiver Functions ... 39
Table 4-6 Available Interrupt Types and Related Function Call .. 51

Table 4-7 Trigger Input/Output Transmitter Functions .. 60
Table 4-8 Physical Error Injection .. 70
Table 4-9 Frame Attributes for Generic Transmit Frames .. 74
Table 4-10 Payload Generation Mode Frame Content Source ... 75

Table 4-11 Errors Replayable/Not Replayable ... 79
Table 4-14 Trigger Input/Output receiver functions ... 86

Table 4-15 Global Receiver Status.. 88
Table 4-16 Verification Mode Options and Required Parameters (for VL-Oriented Rx

Mode) 91
Table 4-17 Verification Mode Options and Required Parameters (for Chronological

Monitor Receive Mode) ... 105

Table 4-18 TCB Content ... 107
Table 4-19 Error Conditions Available for Triggers ... 108

Table 5-1 Program Samples Overview ... 120
Table 5-2 API S/W Library Function Calls vs. Program Samples...................................... 159

ARINC664 / AFDX Programmer’s Guide 1

1 INTRODUCTION

1.1 General

Welcome to the Programmer's Guide AFDX/ ARINC-664. This programmer's guide, in

conjunction with the Reference Manual AFDX/ ARINC-664, is intended to provide the

software (s/w) programmer with the information needed to develop a host computer application

interface to AIM’s ARINC664 devices. The Reference Manual AFDX/ ARINC-664 provides

the detailed API s/w library functions.

1.2 How This Programmer's Guide is Organized

The Programmer's Guide AFDX/ ARINC-664 is divided into 6 sections. These sections

include the following:

Provides a high level overview of the Avionics Full

Duplex Switched Ethernet (AFDX) Network structure,

protocols and frame formats.

Section 2
AFDX

Network

Overview

Section 1

Introduction

Provides an introduction to the contents of the

programmer's guide documentation conventions and

applicable documents.

Provides a high level overview of the hardware and

software design. Included in the software section is

information concerning the compilers supported, a

description of the Board Support Package and how to

create an application program.

Section 3
PCI-FDX

Overview

ARINC664 / AFDX Programmer’s Guide 2

4.1

Library Admin

& System

4.2

Transmitter

Programming

4.3

Receiver

Programming

Provides the programming guidelines for the Library

Administration and Board-level functions as well as the two

main functional systems on the AFDX devices including:

- Transmitter

- Receiver

Section 5

Program

Samples

Section 6

Notes

Provides an explanation of two

complete sample programs, and

references for function calls used in the

sample programs.

Section 4

Programming

Using the API

Library

Provides expansion for all acronyms

and definitions for terms used

frequently in this document.

ARINC664 / AFDX Programmer’s Guide 3

1.3 Conventions Used

1.3.1 General Documentation Conventions

We use a number of different styles of text and layout in this document to help differentiate

between the different kinds of information. Here are some examples of the styles we use and an

explanation of what they mean:

Italics - used as a placeholder for the actual name, filename, or version of the software

in use

Bold text - a function, or parameter, or used to highlight important information

Bold Blue - will be used to show reference documentation

Bold italics - caution, warning or note

Font - font used to show paths, directories and filenames within the body of text will

be shown in blue. For example:

C:\Windows\System32\Drivers\Aim_fdx.sys

 A smaller version of this font will be used to list

software code.

| - an action delineator that will lead you through nested menu items and dialog

box options to a final action, for example, the File | Open ..

In addition to text and layout convention, there are a couple of naming conventions used to

simplify the information herein. The PCI-FDX s/w library, is also called the Application

Programming Interface (API). For ease of documentation flow, the PCI -FDX s/w library will

be referred to from this point on as the API S/W Library. In addition, the software and

firmware contained on the PCI-FDX bus interface board will be referred to as the API Target

S/W.

1.3.2 Parameter Naming Conventions

In order to understand the sample programs and individual programming examples contained in

this guide, we should review some of the parameter naming conventions used throughout the

API S/W Library. Naming conventions have been used for naming constants, structures,

functions calls and data types.

ARINC664 / AFDX Programmer’s Guide 4

Note: All constants, structures and functions used in the API S/W Library are defined in the

AiFdx_def.h header file. Data types used in the API S/W Library are defined in

Ai_cdef.h.

Naming conventions used include the following

 Constants - For every function call, a list of constants have been defined to

better describe the numerical value of the function input or output. (located in

AiFdx_def.h). These constants will be used throughout this document.

 Structures - Named as ty_fdx_name where name is unique to the structure.

(located in AiFdx_def.h)

 Functions - Named as either Fdxname or FdxCmdname where name is unique

to the function (located in AiFdx_def.h)

 Fdxname functions do not involve driver commands to the bus interface

unit (BIU)

 FdxCmdname functions involve driver commands to the BIU

 Data Types - all variables are assigned an AIM equated data type as shown in

Table 1-1 below (defined in Ai_cdef.h)

Table 1-1 API S/W Library Data Type Naming Conventions

API S/W Library Data Type
Size

(in bytes)

AiInt integer 4

AiUInt unsigned integer 4

AiInt8 character 1

AiInt16 short integer 2

AiInt32 long integer 4

AiUInt32 unsigned long integer 4

AiUnt16 unsigned short integer 2

AiUInt8 unsigned character 1

AiChar character 1

AiUChar unsigned character 1

AiDouble double floating point 8

AiFloat single floating point 4

ARINC664 / AFDX Programmer’s Guide 5

1.4 AIM Document Family

AIM has developed several documents that may be used to aid the developer with other aspects

involving the use of the PCI-FDX bus interface card. These documents and a summary of their

contents are listed below:

Reference Manual AFDX/ ARINC-664 - provides the AFDX application developer with the

detailed API library function calls. This guide is to be used in conjunction with the

Programmer's Guide AFDX/ ARINC-664.

Getting Started Manual AFDX/ ARINC-664 - assists first time users of AIM ARINC664

hardware with software installation, hardware setup and starting a sample project.

Hardware Manuals: provide the hardware user’s manual for the specified modules. The

document covers the hardware installation, the board connections, the technical data and

a general description of the hardware architecture.

PBA.pro Bus Analyzer Getting Started – introduces the PBA.pro Bus Analyzer and contains

links to further documentation.

AIM Network Server (ANS) Users Manual - assists users with installation and initial setup of

the AIM Network Server software. Client and Server configuration and

software/hardware requirements are outlined with complete step-by-step instructions for

software installation.

ARINC664 / AFDX Programmer’s Guide 6

THIS PAGE INTENTIONALLY LEFT BLANK

ARINC664 / AFDX Programmer’s Guide 7

2 AFDX NETWORK OVERVIEW

The Avionics Full-Duplex Switched Ethernet (AFDX) Network is built around commercial

standards including: IEEE802.3 Ethernet Medium Access Controller (MAC) addressing,

Internet Protocol (IP) and User Datagram Protocol (UDP). Provisions have been added to

ensure guaranteed deterministic timing and redundancy required for Avionics applications. The

network data rates include 10Mbps, 100Mbps and 1000 Mbps.

This section will provide an overview of the following:

a. AFDX Network Structure

b. AFDX Protocol Stack

c. AFDX Frame Format.

Detailed information regarding the AFDX End System requirements can be found in the AFDX

End System Detailed Functional Specification.

ARINC664 / AFDX Programmer’s Guide 8

2.1 AFDX Network Structure

As shown in Figure 2-1, there are three types of AFDX Network elements including:

a. End System(s) - A device whose applications access the network components to

send or receive data from the network. End-Systems perform traffic shaping

which is enforced by Switches.

b. Switch(es) - A device which performs traffic policing and filtering, and forwards

packets towards their destination End-Systems.

c. Link(s) - All links/connections are copper or fiber optic, full duplex,

100Mbits/sec (no dedicated backbone bus for Inter-switch communications).

Redundancy is achieved by duplication of the connections (wires) and the Switches.

Figure 2-1 AFDX Network Topology

AFDX

Switch

AFDX

End-System

AFDX

Switch

AFDX

Switch

AFDX

Switch

AFDX

End-System AFDX

End-System

AFDX

End-System

AFDX

End-System

AFDX

End-System

AFDX

Switch

AFDX

End-System

AFDX

Switch

AFDX

Switch

AFDX

Switch

AFDX

End-System AFDX

End-System

AFDX

End-System

AFDX

End-System

AFDX

End-System

ARINC664 / AFDX Programmer’s Guide 9

End-Systems communicate/exchange Frames through Virtual Links (VLs) as depicted in

Figure 2-1. A VL defines a unidirectional connection from one source End-System to one or

more destination End-Systems.

Figure 2-2 Virtual Link Scenario

 An AFDX Network can contain up to 64K VLs

ES

ES

ES

ES

ES

ES

VL: 1

VL: 2 VL: 3

ES

ES

ES

ES

ES

ES

VL: 1

VL: 2 VL: 3

ARINC664 / AFDX Programmer’s Guide 10

End-Systems perform traffic shaping and Integrity checking on each VL. The End-System

controls the flow for each VL in accordance with the Bandwidth Allocation Gap (BAG) which

is depicted in Figure 2-3.

Figure 2-3 Bandwidth Allocation Gap (BAG)

 Frame 1

For a VL, frames can appear on the link in a given time interval (Window) which is sized by the

BAG and the maximum allowed jitter as shown in Figure 2-4. Jitter is the difference between

the minimum and maximum time from when a source node sends a message to when the sink

node receives the message. Jitter is generally a function of the network design and multiplexing

multiple VLs on one port.

Figure 2-4 Maximum Jitter Window

 BAG values are in milliseconds: 1, 2, 4, 8, 16, 32, 64, 128

 Per VL, a maximum of 1000 Frames per second can be
transmitted.

BAG

F3
F1 F2

BAG

F3
F1 F2

F3
F1 F2

BAG BAG

Maximum Jitter

Window

Jitter = 0 0 < Jitter < Max Jitter = Max

F3
F1 F2

BAG BAG

Maximum Jitter

Window

F3
F1 F2

BAG BAG

Maximum Jitter

Window

Jitter = 0 0 < Jitter < Max Jitter = Max

ARINC664 / AFDX Programmer’s Guide 11

Each VL may consist of up to 4 sub-VLs. Each Sub VL is designated its own FIFO queue.

Scheduling of frames is based upon a Round-Robin transmission scheme as shown in Figure

2-5.

Figure 2-5 Sub-VL Round Robin Scheduling

Sub-VL

FIFO’s

MAC

VL FIFO

IP

3 ms
3 ms

3 ms

Sub-VL

FIFO’s

MAC

VL FIFO

IP

3 ms
3 ms

3 ms

 The Sub VL FIFO queues are read on a round-robin basis by
the VL FIFO Queue to optimize the bandwidth of the VL

ARINC664 / AFDX Programmer’s Guide 12

End-system ports, links and switches are duplicated for redundancy as shown in Figure 2-6.

Frames are concurrently transmitted over both networks.

Figure 2-6 Redundancy Management

Integrity checking is done per VL and per Network as shown in Figure 2-7.

Figure 2-7 Redundancy Management & Integrity Checking on a Receive End-System

Network A
Per VL

End-System

Transmit

Per VL

End-System

Receive

Network B

Frame
Frame

Frame

Frame

Network A
Per VL

End-System

Transmit

Per VL

End-System

Receive

Network B

Frame
Frame

Frame

Frame

Integrity Checking

Detect and eliminate

invalid frames

Redundancy

Management

Eliminate Redundant

Frames

Integrity Checking

Detect and eliminate

invalid frames

Network A

Network B

Application

Network Mgmt

Integrity Checking

Detect and eliminate

invalid frames

Redundancy

Management

Eliminate Redundant

Frames

Integrity Checking

Detect and eliminate

invalid frames

Network A

Network B

Application

Network Mgmt

 Frames are transmitted simultaneously over both networks

 On the Receiving End-System, “First Valid Frame wins”

 Integrity Checking is based on Sequence Number and MCFL
(Maximum Consecutive Frames Lost).

 All Invalid Frames are discarded

ARINC664 / AFDX Programmer’s Guide 13

2.2 AFDX Protocol Stack

As shown in Figure 2-8, Avionics applications residing at End-Systems exchange messages via

the services of the User Datagram Protocol (UDP) Layer.

Figure 2-8 AFDX Protocol Stack

 AFDX switches switch AFDX frames based on the MAC
Destination Address

AFDX

End-System

AFDX

Switch

AFDX

End-System

Application

Presentation

Session

Transport

Network

Datalink

Physical

IP

UDP

Ethernet/MAC

Avionics

Application

Avionics

Application

Ethernet/MAC

IP

UDP

Ethernet/MAC

Avionics

Application

Avionics

Application

OSI

AFDX

End-System

AFDX

Switch

AFDX

End-System

Application

Presentation

Session

Transport

Network

Datalink

Physical

Application

Presentation

Session

Transport

Network

Datalink

Physical

IP

UDP

Ethernet/MAC

Avionics

Application

Avionics

Application

Avionics

Application

Avionics

Application

Ethernet/MAC

IP

UDP

Ethernet/MAC

Avionics

Application

Avionics

Application

Avionics

Application

Avionics

Application

OSI

ARINC664 / AFDX Programmer’s Guide 14

Applications send/receive messages through two types of UDP ports as shown in Figure 2-9:

AFDX Communication Ports or Service Access Point (SAP) Ports. AFDX Comm Ports

communicate via a static "connection" i.e., the IP/UDP Source/Destination addresses are

contained in the AFDX frame header are static. SAP ports, however, are "connectionless" i.e.,

the E/S application can dynamically determine the destination address (IP address and UDP port

number) for messages transmitted, and messages can be received from multiple sources.

AFDX Comm ports provide two different types of services as defined by ARINC 653:

Queuing services - AFDX messages may be sent over several AFDX frames

(fragmentation by IP layer), no data is lost or overwritten

Sampling services - AFDX messages are sent in 1 Frame, data may be lost or

overwritten.

Figure 2-9 AFDXComm and SAP UDP Ports

 AFDX Comm Ports are associated with an address “Quintuplet” consisting of:

 - UDP Src/Dest Port

 - IP Src/Dest Address

 - MAC Dest Address (VL)

 SAP ports dynamical define their destination (IP address and UDP port #) for each transmission

 Each AFDX Comm Port and each SAP port is associated with a UDP Port

 Each UDP port is associated with a Virtual Link over which all messages sent/received via the port
travel. The VL used by the port is identified by a VL field within the IP layer’s destination address

 The IP layer handles the fragmentation/reassembly functions required by Queuing and SAP ports

 The Ethernet/MAC layer handles the Physical and Data Link functions in the AFDX network

 No routing tables are required to map the IP destination address to MAC destination address
mapping

 Up to 100Mbps Ethernet is supported

Q SQ Q S SQ

UDP

IP

Virtual

Links

Application(s)Application(s)

SAP

Port

VL4 VL5VL1 VL3VL2

AFDX

Comm

Port

Q SQ Q S SQ

UDP

IP

Virtual

Links

Application(s)Application(s)

SAP

Port

VL4 VL5VL1 VL3VL2

AFDX

Comm

Port

ARINC664 / AFDX Programmer’s Guide 15

2.3 AFDX Frame Format

The AFDX Frame Structure is shown in Figure 2-10. This section will provide further

definition of the main components of the AFDX Frame Structure including:

a. MAC Header

b. IP Header

c. UDP Header

d. AFDX Payload.

Figure 2-10 AFDX Frame Structure

AFDX Frame Structure

Frame Size:

Preamble + Start Delimiter + InterFrame Gap:

Duration of Minimum Frame:

Duration of Maximum Frame:

64…1518 Bytes

20 Bytes

6.72 sec

123.04 usec

Preamble
Start

Delimiter

MAC

Header

IP

Header

UDP

Header
AFDX Payload

Message

Sequence

Number FCS

7 1 14 20 8 17…1471 1 4bytes

Frame Size:

Preamble + Start Delimiter + InterFrame Gap:

Duration of Minimum Frame:

Duration of Maximum Frame:

64…1518 Bytes

20 Bytes

6.72 sec

123.04 usec

Preamble
Start

Delimiter

MAC

Header

IP

Header

UDP

Header
AFDX Payload

Message

Sequence

Number FCS

7 1 14 20 8 17…1471 1 4bytes

Preamble
Start

Delimiter

MAC

Header

IP

Header

UDP

Header
AFDX Payload

Message

Sequence

Number FCS

7 1 14 20 8 17…1471 1 4bytes

ARINC664 / AFDX Programmer’s Guide 16

AFDX - MAC LAYER

The MAC header is comprised of a Source and Destination Address, and a Type Field. Each

address is 48 bits wide. The Destination Address identifies the virtual link. The Source Address

is a Unicast Address. The Destination Address is a Multicast Address.

 Figure 2-11 MAC Header

MAC Header

Constant Field

0000 0010 0000

0000 0000 0000

Network ID Equipment ID

0000
Domain

ID
Side ID

Location

ID

Interface

ID
00000

24 bits 4 4 5 3 53

Constant Field

0000 0010 0000

0000 0000 0000

Network ID Equipment ID

0000
Domain

ID
Side ID

Location

ID

Interface

ID
00000

24 bits 4 4 5 3 53

MAC SOURCE ADDRESS

MAC DESTINATION

ADDRESS

Preamble
Start

Delimiter

MAC

Dest Addr Ethernet Payload FCS

7 1 6 46…1500 4

MAC

Source Addr

Type

6 2

Constant Field
0000 0011 0000 0000 0000 0000 0000 0000

Virtual Link Identifier

32 bits 16 bits

bytes

ARINC664 / AFDX Programmer’s Guide 17

AFDX - IP (INTERNET PROTOCOL) LAYER

Figure 2-12 shows the IPv4 header and expands the Source and Destination addresses. IP Source

Address is Unicast to identify the transmitter. IP Destination Address is Unicast to identify the

target subscriber or is Multicast.
Figure 2-12 IP Header

IP SOURCE

ADDRESS

IP DESTINATION ADDRESS

IP HEADER

Preamble
Start

Delimiter

MAC

Header

IP

Header IP Payload FCS

7 1 14 26…1480 4

Version IHL
Type of

Service

Total

length

Fragment

identification

Cntrol

Flag Fragment

Offset

Time to

Live
Protocol

Header

checksum

IP Source

Address

IP

Destination

Address

4 4 13 8 8 16 32 3216 16 38

20bytes

bits

Constant Field

0000 1010

Network ID Equipment ID

1000
Domain

ID
Side ID

Location

ID

8 bits 4 4 5 3 53

Partition ID

000
Partition

ID

Constant Field

0000 1010

Network ID Equipment ID

1000
Domain

ID
Side ID

Location

ID

8 bits 4 4 5 3 53

Partition ID

000
Partition

ID
0000

Constant Field

1110 0000 1100 0000
Virtual Link Identifier

16 bits 16 bits

Constant Field

1110 0000 1100 0000
Virtual Link Identifier

16 bits 16 bits

1110 0000 1110 0000
(multicast)

ARINC664 / AFDX Programmer’s Guide 18

AFDX - UDP (USER DATAGRAM PROTOCOL) LAYER

Figure 2-13 shows the UDP layer. The UDP layer takes messages from the application process,

attaches source and destination port number fields for the multiplexing/demultiplexing service,

adds the UDP length and Checksum, and passes the resulting "segment" to the IP layer.

Figure 2-13 UDP Header

AFDX PAYLOAD AND SEQUENCE NUMBER

Figure 2-14 shows the AFDX payload contents which include a sequence number (0-255). The

sequence number is added by the transmitting End-System for each transmitted consecutive

frame of the same VL on the AFDX Network. It starts with 0, then wraps around to 1 when it

exceeds 255.

Figure 2-14 AFDX Payload and Sequence Number

Preamble
Start

Delimiter

MAC

Header

IP

Header

UDP

Header UDP Payload FCS

7 1 14 20 18…1472 4

Source Port

16 bits

Destination Port UDP length UDP Checksum

16 bits 16 bits 16 bits

8

UDP HEADER

AFDX PAYLOAD AND SEQUENCE NUMBER

HEADER
Preamble

Start

Delimiter

MAC

Header

IP

Header

UDP

Header AFDX Payload FCS

7 1 12 22 17…1471 48

AFDX

Sequence

Number

114 22

ARINC664 / AFDX Programmer’s Guide 19

3 AFDX OVERVIEW

The AIM's family of AFDX modules providing full function test, simulation, monitoring and

databus analyzer functions for AFDX applications. The key technical features of the AFDX Bus

Interface modules are:

 Each AFDX port can act as Traffic Generator/ Simulator and Receiver/ Monitor

 Supports AFDX- port related Frame Statistics

 Provides configurable Redundancy Management for AFDX Receive and Transmit ports

 Supports operational speeds of either 10MBit/s, 100MBit/s or 1GBit/s

 High-Resolution time stamping of received frames

Figure 3-1shows two typical application scenarios for any of AIM's AFDX Bus Interface Cards.

This section will provide an overview of the following AFDX-Module characteristics:

a. Functional overview of

 Traffic Generation

 Traffic Receive/Monitor Operation

b. Hardware Overview

c. Software Overview

 Software Architecture

 Board Support Package (BSP) Contents

 Creating Your Own Host Application.

ARINC664 / AFDX Programmer’s Guide 20

Figure 3-1 FDX Bus Interface Card Application Scenarios

ES 5

ES 1

ES 3
ES 6

ES 4

ES 2

App 1

Tx1/2 Configure one AFDX Transmit Port

for Generic Transmit Mode to

generate data as if from multiple

End Systems with varying PGWT &

IFGs.

App 2

Tx1/2 Configure the AFDX Transmit Ports

for UDP Port-Oriented Simulation

(Redundant) to simulate the generation

of VLs transmitted by ES4.

Rx1 Configure one AFDX Receive Port

for Chronologic Receive (Monitor)

mode to record and monitor data

transmitted at one switch output.

App 2

Rx1/2 Configure the AFDX Receive Ports for

VL-Oriented Receive Operation

(Redundant) to receive the generation

of VLs switched to ES4.

App 1 Application Scenario 2

ES4 Development/Test

Application Scenario 1

Switch Development/Testing

Rx2 Configure one AFDX Receive Port

for VL-Oriented Receive mode to

verify proper switching at another

switch output.

ES 5

ES 1

ES 3
ES 6

ES 4

ES 2

App 1

Tx1/2 Configure one AFDX Transmit Port

for Generic Transmit Mode to

generate data as if from multiple

End Systems with varying PGWT &

IFGs.

App 2

Tx1/2 Configure the AFDX Transmit Ports

for UDP Port-Oriented Simulation

(Redundant) to simulate the generation

of VLs transmitted by ES4.

Rx1 Configure one AFDX Receive Port

for Chronologic Receive (Monitor)

mode to record and monitor data

transmitted at one switch output.

App 2

Rx1/2 Configure the AFDX Receive Ports for

VL-Oriented Receive Operation

(Redundant) to receive the generation

of VLs switched to ES4.

App 1 Application Scenario 2

ES4 Development/Test

Application Scenario 1

Switch Development/Testing

Rx2 Configure one AFDX Receive Port

for VL-Oriented Receive mode to

verify proper switching at another

switch output.

ARINC664 / AFDX Programmer’s Guide 21

3.1 AFDX Functional Overview

The functionality of the AFDX module can be divided into the following:

a. AFDX Traffic Generation

b. AFDX Receive/Monitor Operation.

These functions are defined in the following sections.

3.1.1 AFDX Traffic Generation

The three AFDX Traffic Generation modes of data transmission are listed below:

a. UDP Port-Oriented Simulation - This mode simulates the AFDX Comm ports

(defined by ARINC-653) and SAP ports. AFDX Comm Ports communicate via a

static "connection" i.e., the IP/UDP Source/Destination addresses are contained

in the AFDX frame header are fixed. SAP ports, however, are "connectionless"

i.e., the E/S application

can dynamically

determine the destination

address (IP address and

UDP port number) for

messages transmitted, and

messages can be received

from multiple sources.

 An AFDX Comm port provide two different types of services:

 Queuing service - AFDX messages are sent over several AFDX frames

(fragmentation by IP layer), no data is lost or overwritten.

 Sampling service- AFDX messages are sent in 1 frame, data may be lost

or overwritten.

 The end-systems, VLs, and partitions are represented by the IP-Addresses and

communication end points are described by the AFDX Comm UDP-Port.

 SAP ports can also transmit and receive AFDX messages that are sent over one

or more AFDX frames, however, the protocol for that communication is not

determined by ARINC 653.

b. Generic Transmit Operation - This mode provides maximum flexibility and

consists of a frame based transmission sequence. Each frame can be associated

with attributes defining information about the relative timing between the frames,

UDP Layer UDP Layer

Application(s)Application(s)

AFDX

Comm

Port

Q SQ Q S Q S
SAP

Port

UDP Layer UDP Layer

Application(s)Application(s)

AFDX

Comm

Port

Q SQ Q S Q S
SAP

Port

ARINC664 / AFDX Programmer’s Guide 22

error injection, payload-generation mode, transmission skew in redundant

operation mode and/or special events like a digital output strobe-signal. For

high-throughput, special payload-generation modes can be used, so the hardware

takes parts of the frame-data from static send-fields. Because all frames must be

pre-buffered on the hardware, the number of frames is limited to the board-

resources.

c. Replay Operation

 Physical Re-Transmission of pre-recorded network traffic

Table 3-1 defines the key features and differences between the UDP-Port Oriented transmission

mode and the Generic Transmission mode.

Table 3-1 Transmission Mode Key Features

UDP Port-Oriented Simulation Generic Transmit Operation

Simulation of network traffic in accordance with AFDX

End System Detailed Functional Specification

Autonomous operation including sequencing of the

outgoing data packets with programmable interframe

gaps, without Host interaction.

Support Sampling & Queuing service implementation for

multiple VL's

Sampling and Queuing services can be specified for the

frames defined within the generic frame sequence.

Programmable Packet Intermessage gap Flexible packet scheduling by using various packet timing

modes

VL simulation with Traffic Shaping and Sequence

Numbering

Programmable Sequence Numbering operation within the

transmission list

Synchronization of traffic between multiple AFDX- ports Synchronization of traffic between multiple AFDX- ports

Start of traffic generation on external strobe Start of traffic generation on external strobe and strobe

generation on packet transmission

Start of traffic on absolute time, which allows the

synchronization of multiple streams/modules.

Start of traffic on absolute time, which allows the

synchronization of multiple streams/modules.

 Various Payload Generation modes, which reduces the

data exchange at high performance transmission

 Transmission of the 'Packet Start Time stamp' within the

payload of the outgoing frame

Enable/Disable specific VL's Enable/Disable specific VL's

Error injection capabilities: Error injection capabilities:

- Physical Error Injection on Frame Level (CRC,

Interframe Gap, Frame Size, Byte Alignment, ..)

- Physical Error Injection on Frame Level (CRC,

Interframe Gap, Frame Size, Byte Alignment, ..)

- Logical Error Injection on MAC- /IP Layer - Logical Error Injection on MAC- /IP Layer

- Wrong Sequence Numbering - Wrong Sequence Numbering

- Timing Error Injection (BAG- violation) - Timing Error Injection (BAG- violation)

Redundant or non- redundant Operation available Redundant or non- redundant Operation available

ARINC664 / AFDX Programmer’s Guide 23

3.1.2 AFDX Receive / Monitor Operation

The Receive AFDX Receive / Monitor Operation Modes define how captured frames are

stored on the board and how data is filtered. The two Receive Modes are defined as follows:

a. VL-Oriented Receive Operation - In this Receive Mode the UDP Port can

receive and store messages for either "connection" oriented (AFDX Comm Ports)

or "connectionless" oriented (SAP) ports. The Receive AFDX Comm ports are

characterized by the address-quintuplet, (VL, Src.-IP, Dst.-IP, Src.-UDP, Dst.-

UDP), each with its own message storage area. In this mode, the user must

specify the exact address quintuplet in order for the VL frames to be captured.

SAP receive ports, however, may receive AFDX messages from multiple

sources. Therefore, the user only specifies the VL and UDP/IP destination adress

in order for the VL frames to be captured. The source of the AFDX frame is only

determined after the message has been received. (Trigger capability is not

provided in this receive mode.)

b. Chronological Receive Operation (Monitor Mode)- In this Receive mode all

VL data streams are captured and the frames are stored in a single memory

buffer. If desired, the user can specify additional VL filters/checking to be

performed on the captured frames. This mode provides for recording/saving the

captured data for replay. Four Capture modes are available.

 SingleShot-Standard

In this mode, each port uses a pre-defined onboard memory area

(SingleShot memory) for capturing frames. After this memory is full, no

more frames will be stored. The size of singleshot-memory depends on

your board type and RAM-Size. Trigger Control Blocks (TCBs) can be

used to define the trigger condition that will start data capture (by default

capturing starts immediately from the first frame received) and how much

"pre-trigger data" is to be stored in the Monitor Buffer.

 SingleShot-Selective
This mode is similar to SingleShot-Standard mode but Trigger-Control-

Blocks are used for filtering the in-coming frames. Before a frame is

saved in the SingleShot-memory it will be evaluated using the active

TCB. Only those frames which meet the TCB condition will be saved in

the onboard memory.

 Continuous

In this mode, the SingleShot-memory is used as a ring-buffer. As soon

as the memory is full, old frames will be overwritten with new frames

(wrap-around). Trigger-Control Blocks can be used in this mode to

define the trigger condition that will start data capture (by default

capturing begins immediately from the first frame received).

ARINC664 / AFDX Programmer’s Guide 24

 Record

In this mode, the Monitor buffer is organized in the same way as in

Continuous mode. However, captured frames are written directly to a

user-specified file. Trigger-Control Blocks can be used in this mode to

define the trigger condition that will start data capture (by default

capturing begins immediately from the first frame received).

Table 3-2 defines the key features and differences between the Chronologic and VL-Oriented

Receive modes.

Table 3-2 Reception Mode Key Features

VL-Oriented Receive Operation Chronological Receive Operation (Monitor

Mode)

VL- oriented multi buffering and Time Stamping of

received data packets

Full chronological traffic monitoring and analyzing

with relative gap time measurement and absolute Time

Stamping, concurrently with any other mode of

operation

VL-Oriented Filtering with optional Second Level

Filtering on Generic packet parameters

VL oriented Filtering with optional Second Level

Filtering on Generic packet parameters

 Comprehensive trigger capabilities for traffic

capturing (VL, header info, error, data, receive time)

 Programmable Data Capture modes providing

Continuous, Record, and Selective capture capability

Independent, programmable Buffer Size for each VL Programmable Monitor Buffer Size, which allows a

massive on-board data buffering

Interrupt generation on dedicated Buffer Event Interrupt generation on Buffer Events

VL-Oriented receive Counters and Error Accumulators

are provided

VL-Oriented receive Counters and Error Accumulators

are provided

Redundancy Management at redundant port

configuration

Redundancy Management at redundant port

configuration

Physical Error Detection on Frame Level Physical Error Detection on Frame Level

- CRC Error detection - CRC Error detection

- Frame Size Violation - Frame Size Violation

- Interframe Gap violation - Interframe Gap violation

- Wrong Byte Alignment - Wrong Byte Alignment

- Undefined Symbol received - Undefined Symbol received

AFDX- specific Error Detection AFDX- specific Error Detection

- Traffic Shaping verification - Traffic Shaping verification

- Verification of static header fields (MAC, IP) - Verification of static header fields (MAC, IP)

- Integrity Checking of VL related packets - Integrity Checking of VL related packets

 Strobe generation on dedicated Trigger Event

ARINC664 / AFDX Programmer’s Guide 25

ARINC664 / AFDX Programmer’s Guide 26

3.2 AFDX Software Overview

This section will provide an overview of the AFDX software including:

a. Software Architecture

b. Board Support Package (BSP) Contents

c. Creating a New Microsoft Visual C/C++ Application Program.

The instructions for using the API function calls are defined in Section 4.

3.2.1 AFDX Software Architecture

The AIM "Common Core" design, as shown in the previous section, provides for the utilization

of a common application s/w library of function calls to support host application interfaces to the

AFDX device(s). Figure 3-2 shows the high-level software architecture of the PCI-FDX module

and it's interface to a host computer application.

As shown in Figure 3-2, the API S/W Library is utilized by the User's Application program to

control the AFDX target module. (As an option, the application developer can utilize the AIM

PBA.pro Bus Analyzer Software Bus Monitor function to monitor bus traffic setup by the User's

Application.) Both PBA.pro and the User's Application program utilize the same API S/W

Library.

The API S/W Library encapsulates operating system specific handling of Host-to-Target

communication in order to support multiple platforms with one set of library functions.

Operating systems and compilers supported by the API S/W Library are defined in Table 3-3.

Table 3-3 Compatible Operating Systems / Compilers

Operating Systems Compilers

Windows 7/8/10 (32 bit, 64 bit)

Linux (32 bit, 64 bit)

VxWorks

LynxOS

Microsoft Visual Studio (2013 or

higher)

ARINC664 / AFDX Programmer’s Guide 27

Figure 3-2 Host/Target Software Interface Diagram

API Software
Library

Host-Target Interface

Unique 'C' function call / DLL

Operating System independent

Operating System
dependent communication

System Level

Application Level

Host

Target

System Driver
(OS Dependent Device Driver)

Backplane

User's
Application

PBA.pro
Bus Analyzer

Software
(optional)

[Serial Interface]

Target Level

Support software:
- Monitor software
- LCA-Boot software
- UART / HW init

[Debug interface] Driver-host interface

AFDX ASP Driver Software

AFDX BIU Firmware

Board Hardware / AFDX specific Hardware

Operating System Nucleus Plus

API/AMC-FDX

ARINC664 / AFDX Programmer’s Guide 28

As shown in Figure 3-2, the API S/W Library consists of "C" functions which can be called

within your application program to setup and control the PCI-FDX module(s).

The AIM API S/W Library is supplied as a dynamic link library (DLL) containing the collection

of functions used to setup and command the PCI-FDX modules. A function in a DLL is only

connected to a program that uses it when the application is run. This is done on each occasion

the program is executed as shown in Figure 3-3. Two binary files are utilized by the application

program including:

a. api_fdx.dll - contains the executable code for the DLL.

b. api_fdx.lib – defines the items exported by an AIM API S/W Library DLL

in a form which enables the linker to deal with references to exported items when

linking a program that uses the AIM API S/W Library DLL function.

Note: In order to utilize the API S/W Library, api_fdx.lib must be linked

to the application program. Section 3.2.3provides further detail.

Figure 3-3 DLL and Program Interfaces

The api_fdx.lib and api_fdx.dll files are provided in two forms for 32-bit and 64-bit

OS use with Microsoft Visual C/C++.

api_fdx.dll

Program C.exe

Program B.exe

Program A.exe

Program A api_fdx.dll

The address of the function

is obtained from

api_fdx.lib and it is used to

call the function.

3. Linkage to DLL function

1. Program A is loaded

2. api_fdx.dll is loaded

Function

ARINC664 / AFDX Programmer’s Guide 29

3.2.2 AFDX Board Support Package

The BSP is downloaded to your computer upon s/w installation for your device. (Please see the

corresponding Getting Started Manual for further information regarding s/w installation.)

ARINC664 / AFDX Programmer’s Guide 30

3.2.3 Creating a New Microsoft Visual C/C++ Application Program

This section will review the following:

a. API S/W Library header files that need to be included in your application

program

b. Windows C/C++ steps to create and compile a new application program.

 Header File Defines for New Application Programs

For all platforms, the two C-syntax header files shown in Figure 3-4 are provided. Only the

AiFdx_def.h header file needs to be included in your application program. (This header file

provides for the inclusion of the Ai_cdef.h header file.)

Figure 3-4 API S/W Library Header Files

These header files are located in:

x:\Program Files\AIM GmbH\PCI-FDX-Windows-BSP-

Vxxxx\spg

All header files need to be included in the search path when compiling

your new program as described in the following section.

AiFdx_def.h

#include "Ai_cdef.h"

constant definition

structure definition

function defintion

error code constants

Ai_cdef.h

data type definition

multi-platform support

ARINC664 / AFDX Programmer’s Guide 31

 Creating and Compiling Your Application Program

Your new Console Win32 Application program can be created by using a sample program (See

Section 1, Program Samples) as a basis and modifying it as needed. Once your new application

has been created, there are three additional steps to configuring the Microsoft Visual C/C++

application before compiling to insure your program executes without error including:

a. Adding proper search paths for the API S/W Library include files

b. Adding the preprocessor definition required for the PCI-FDX device

c. Linking the application program to the api_fdx.dll via connection to

api_fdx.lib and compiling your program

Note: api_fdx.dll must be located in the same directory as the User's

Application executable(s).

Please review the following steps to accomplish the items above.

 To add the proper search paths for the API S/W Library Header files perform the

following steps:

1. Select Tools | Options

 The Options window will pop up.

2. Select the Directories Tab

3. For Show directories for:, select Include Files

4. Add the Directory with the include files:

 x:\Program Files\AIM GmbH\PCI-FDX-Windows-BSP-

Vxxxx\spg

5. Select OK

ARINC664 / AFDX Programmer’s Guide 32

 To add the preprocessor definition required for the API/AMC-FDX device:

1. Select Project | Settings

 The project settings window will pop up.

2. Select the C/C++ tab

3. Under Preprocessor Definitions enter _AIM_WINDOWS and _AIM_FDX

 4. Select OK

ARINC664 / AFDX Programmer’s Guide 33

 To link the api_fdx.lib and api_fdx.dll to the application program and

compile your program perform the following steps

1. Select your project file (in example, Project A Files)

2. Select Project | Add to Project | Files...

 An "Insert Files into Project" window will pop up.

3. For Files of Type: entry, select Library Files (.lib)

4. For File Name: Look in

x:\Program Files\AIM GmbH\PCI-FDX-Windows-BSP-

Vxxxx\bin\

release

5. Select api_fdx.lib

 api_fdx.lib will be added to your project.

6. Now, build the project by selecting Build | Build your program name.exe

7. Copy

x:\Program Files\AIM GmbH\PCI-FDX-Windows-BSP-

Vxxxx\bin\release\aim_Fdx.dll

 to

x:\your project location\debug\

8. The project can now be run by selecting Build | Start Debug | Go

ARINC664 / AFDX Programmer’s Guide 34

THIS PAGE INTENTIONALLY LEFT BLANK

ARINC664 / AFDX Programmer’s Guide 35

4 PROGRAMMING USING THE API LIBRARY

Let's now begin to focus on the concepts of writing application programs to setup and control

the PCI-FDX module from the host. First, we can look at the complete list of API Library

function calls available for the host application developer.

The API S/W Library function calls are divided into the following subgroups and listed in the

tables which follow:

a. Library Administration Functions (

Table 4-1) - used to gain general access to the physical resources provided on the FDX-

2/4 board. There are also functions to observe the resources. The resources are

divided into board- and port-resources.

b. Target Independent Administration Functions (Table 4-2) - utility functions

to help with IRIG time conversions, error translation, and Monitor Buffer

decoding.

c. System Configuration (Table 4-3)- Board level functions to reset the board,

setup IRIG time, status the version number of the board software and perform

resource tests.

d. Transmitter Functions (Table 4-4)) - are divided into three categories:

 Global Transmitter Functions - used for when you are in either the

UDP Port-Oriented or Generic Transmit modes. These functions provide

transmitter mode control and status, trigger line I/O setup, and VL

enable/disable.

 Generic or Replay Transmitter Functions - used to define the AFDX

Generic AFDX Frame content including error injection, whether the

frames are transmitted cyclically or a certain number of times, and the

attributes of the transmission protocol, i.e. IFG, PGWT and skew.

 UDP Port-Oriented Transmitter Functions - used to define the VL and

UDP port (AFDX Comm port or SAP port), AFDX Frame content

including error injection, and attributes of the transmission protocol, i.e.

BAG, and skew.

e. Receiver Functions (Table 4-5) - are divided into three categories:

 Global Receiver Functions - used for when you are in either the

Chronologic Receive Operation (Monitor mode) or VL-Oriented Receive

ARINC664 / AFDX Programmer’s Guide 36

modes. These functions provide the receiver mode control, reception

control, status, VL control and status, and Receiver Trigger line

configuration.

 VL-Oriented Receiver Functions - used to simulate a Receive UDP

"connection" (AFDX Comm port) or "connectionless" (SAP port) for

received AFDX message storage.

 Chronologic Receive Operation (Monitor) Functions - used to setup

the Monitor capture mode, trigger(s) defining when and what to capture,

and to obtain status

Figure 4-1 shows the structure of a basic application program and the Function Call categories

associated with each major part of the program. The following sections will guide you in the

use of the API S/W Library functions. For detailed information regarding each function call

please refer to the Reference Manual AFDX/ ARINC-664.

Table 4-1 Library Administration Functions

Function Description

FdxInit Initializes the Interface Library. Returns a list of servers.

FdxQueryServerConfig Returns a list of resources of one server. Connects additional
server (additional to local available resources)

FdxQueryResource Gets detailed information about a resource

FdxInstallServerConfigCallback Provides a mechanism to notify PnP device changes

FdxLogin Login for one resource

FdxLogout Logout from a resource

FdxInstIntHandler Installs a user-defined interrupt handler function

FdxDelIntHandler Deletes the user-defined interrupt handler function

FdxExit Cleanup the Library internal used memory structures.

ARINC664 / AFDX Programmer’s Guide 37

Table 4-2 Target Independent Administration Functions

Function Description

FdxCmdFreeMemory Frees memory, allocated by the Library, in the proper manner

FdxFwIrig2StructIrig Converts an IRIG time in the format used by the Firmware to a structured
format.

FdxStructIrig2FwIrig Converts an IRIG time in the structured format to the format used by the
Firmware.

FdxAddIrigStructIrig Adds two IRIG time structures

FdxSubIrigStructIrig Subtracts two IRIG time structures

FdxTranslateErrorWord Translates a firmware encoded Error Word for Error Information on
Receiver Side

GNetTranslateErrorWord Translates a firmware encoded Error Word for GNET Error Information on
Receiver Side

FdxInitTxFrameHeader Supports a default initialization of a Transmit Header Structure, needed in
Generic Transmit Mode

FdxProcessMonQueue Processes data read via FdxCmdMonQueueRead.

Table 4-3 System Functions

Function Description

FdxCmdBoardControl Controls and resets the board operation mode.

FdxCmdIrigTimeControl Reads and writes the onboard IRIG Time

FdxCmdStrobeTriggerLine Provides a trigger output strobe on system command.

FdxReadBSPVersion Reads version numbers of board software package components.

FdxCmdBITETransfer Performs transfer tests using available port resources of one FDX board.

ARINC664 / AFDX Programmer’s Guide 38

Table 4-4 Transmitter Functions

 Function Description

Global Transmitter Functions

 FdxCmdTxPortInit Initializes the transmitter

 FdxCmdTxModeControl Defines the Mode of the transmitter

 FdxCmdTxControl Starts and stops the transmitter

 FdxCmdTxStatus Obtains global status information about the transmitter

 FdxCmdTxTrgLineCtrl Controls Transmitter Associated Strobe Input/Output Lines

 FdxCmdTxVLControl Controls VL (Enable / Disable)

 FdxCmdTxStaticRegsCtrl Controls Static Transmit Registers

Generic or Replay Transmitter Functions

 FdxCmdTxQueueCreate Creates a Transmit Queue for AFDX generic frames

 FdxCmdTxQueueStatus Retrieves Status of an AFDX Frame Transmit Queue

 FdxCmdTxQueueWrite Writes AFDX Frames to the Queue

 FdxCmdTxQueueUpdate Updates AFDX Frames of a generic Queue on the fly

UDP Port-Oriented Transmitter Functions

 FdxCmdTxCreateVL Creates a Virtual Link, which can be used for transmission.

 FdxCmdTxCreateHiResVL Creates a Virtual Link, which can be used for transmission
with a high resolution BAG.

 FdxCmdTxUDPCreatePort Creates a AFDX Comm UDP port for transmission.

 FdxCmdTxUDPChgSrcPort Changes the source of a UDP port.

 FdxCmdTxUDPDestroyPort Destroys a configured AFDX Comm UDP port.

 FdxCmdTxUDPWrite Writes one complete AFDX Payload message to a Tx AFDX Comm
UDP port

 FdxCmdTxUDPBlockWrite Writes one or more complete AFDX Payload Messages to multiple
AFDX Comm UDP ports

 FdxCmdTxSAPCreatePort Creates a SAP UDP port for transmission.

 FdxCmdTxSAPWrite Writes an AFDX Payload message to a Tx SAP UDP port.

 FdxCmdTxSAPBlockWrite Writes one or more AFDX Payload Messages to multiple SAP UDP
ports

 FdxCmdTxUDPGetStatus Retrieves the status of a transmission AFDX Comm or SAP UDP
port

 FdxCmdTxUDPControl Controls UDP Port operation (Enable / Disable and error injection)

 FdxCmdTxVLWrite Writes raw entire Frames to the VL-Buffer (UDP functions above
are N/A when using this writing method)

 FdxCmdTxVLWriteEx Writes Frames to the VL-Buffer with extended frame control
possibilities

ARINC664 / AFDX Programmer’s Guide 39

Table 4-5 Receiver Functions

 Function Description

Global Receiver Functions

 FdxCmdRxPortInit Initializes receiver on this port

 FdxCmdRxModeControl Defines the Mode of the receiver

 FdxCmdRxControl Starts and stops the receiver

 FdxCmdRxStatus Obtains status information about the receiver

 FdxCmdRxGlobalStatistics Obtains global statistics about the bus load

 FdxCmdRxVLControl Controls settings for each Virtual Link

 FdxCmdRxVLControlEx Controls extended settings for each Virtual Link

 FdxCmdRxVLGetActivity Obtains Activity information of one Virtual Link

 FdxCmdRxTrgLineControl Controls Receiver associated Strobe Input/Output Lines

VL-Oriented Receiver Functions

 FdxCmdRxUDPCreatePort Creates an AFDX Comm UDP port

 FdxCmdRxUDPChgDestPort Changes destination of a UDP port

 FdxCmdRxUDPDestroyPort Destroys an AFDX Comm UDP port

 FdxCmdRxUDPRead Reads one complete AFDX Payload message from a Rx AFDX
Comm UDP port

 FdxCmdRxUDPBlockRead Reads one or more AFDX Payload Messages from multiple AFDX
Comm UDP ports

 FdxCmdRxSAPCreatePort Creates a SAP UDP port for reception.

 FdxCmdRxSAPRead Reads a complete AFDX Payload message from a Rx SAP UDP
port.

 FdxCmdRxSAPBlockRead Reads one or more complete AFDX Payload Messages from
multiple SAP UDP ports

 FdxCmdRxUDPControl Allows a host interrupt on UDP frame reception

 FdxCmdRXUDPGetStatus Obtains the Status of a SAP or AFDX Comm UDP port

Chronologic Receiver Operation (Monitor) Functions

 FdxCmdMonCaptureControl Defines the capture mode

 FdxCmdMonTCBSetup Defines a Trigger Control Block

 FdxCmdMonTrgWordIni Initializes the Monitor Trigger Word

 FdxCmdMonTrgIndexWordIni Initializes the Monitor Trigger Index Word

 FdxCmdMonTrgIndexWordIniVL Initializes the VL specific Monitor Trigger Index Word

 FdxCmdMonGetStatus Obtains the Status of a Monitor port

 FdxCmdMonQueueControl Creates a Queue, associated with the Monitor

 FdxCmdMonQueueRead Reads data from a Monitor Data Queue

 FdxCmdMonQueueSeek Sets the internal Read index to a Monitor Data Queue

 FdxCmdMonQueueTell Gets the internal Read index to a Monitor Data Queue

 FdxCmdMonQueueStatus Shows the status for a monitor capture queue of a receiver port

ARINC664 / AFDX Programmer’s Guide 40

Figure 4-1 Basic Application Program Structure

Initialization--->Board setup--->Tx Port Setup---> Rx Port Setup---> Start Tx/Rx

---> Retrieve Status ---> Shutdown

Decide how you want to utilize the full-duplex ports on your board.

Determine the Transmit/Receive modes your application requires.

Initialization
(1) API Library

(2) Board Login

(3) Port Login

Board Setup
(1) single or redundant mode, bit rate &

MAC/IPheader verification register

(2) IRIG time

1

2

3

Library Administration Functions
 &
Target Independent Administration Functions

System Functions

Board Handle

Port Handles

Port Tx Setup
(1) Assign Portmap ID to each Tx port

(2) Define Transmitter mode (UDP Port-

Oriented, Generic Transmit or Replay)

UDP Port-Oriented Setup
(1) Define the VL & Sub VL

characteristics

(2) Write UDP port messages created

to Tx port

Global Transmitter Functions

Generic/Replay Transmit Setup
(1) Allocate queue for the storage of

the frames to be transmitted.

(2.1) Define the attributes (non-data)

of the generic Tx frame

(2.2) Insert the data into the generic

Tx Frame

(2.3) Write the Frame attributes and

the Frame data to the Tx Queue

UDP Port-
Oriented

Transmitter
Functions

Generic &
Replay
Transmitter
Functions

ARINC664 / AFDX Programmer’s Guide 41

4

Port Rx Setup
(1) Assign Portmap ID to each Rx port

(2) Define Receiver mode (VL-Oriented

or Chronological Receive)

VL-Oriented Setup
(1) Define VL characteristics to look

for (VL ID and range) and type of

verification required

(2) Setup Rx UDP port (AFDX Comm

or SAP port)

Global Receiver Functions

Chronologic (Monitor) Setup
(1) Define capture mode

(2) Create Monitor queue to hold

captured data.

VL-Oriented
Receiver

Functions

Chronologic
Receiver
Functions

5

Start Tx
(1) Send the AFDX frame cyclically or

a certain number of times

(2) Setup to start immediately or wait

for start time/strobe input

Global Tranmsitter Functions

6

Start Rx
(1) Start receiving the AFDX frames

and reset/no reset status counters

Global Receiver Functions

7

Retrieve Status
(1) Tx Status

(2) Rx Status

(3) Retrieve Captured data

Global Transmitter Functions
UDP Port-Oriented Transmitter Functions
Generic & Replay Transmitter Functions

Global Receiver Functions

VL-Oriented Receiver Functions
Chronologic Receiver Functions

8

Stop Tx/Rx - Shutdown
(1) Stop Tx/Rx

(2) Free Resources

(3) Destroy Port (for VL-Oriented mode) or Delete

Monitor Queue (For Chronologic Receive mode)

(4) Logout of each resource (Board and Port(s))

Global Transmitter Functions
Global Receiver Functions

Library Administration Functions
VL-Oriented Receiver Functions
Chronologic Receiver Functions

ARINC664 / AFDX Programmer’s Guide 42

4.1 Library Administration and System Programming

This section will discuss some of the typical scenarios a programmer would encounter that
would require the use of the Library Administration, Target Independent Administration, and

System, as listed in

Table 4-1, Table 4-2, and Table 4-3 respectively. These scenarios include:

a. Initialization, Login and Board Setup

b. Getting AIM Board Status and Configuration Information

c. Utilizing IRIG-B.

4.1.1 Initialization, Login, and Board Setup

This section will discuss the function calls required to support initialization and shutdown of the

Application interface to your AIM board/module. Reference Section 1, for additional examples

of the function calls described in this section.

The basic Library Administrative and System functions supporting initialization & shutdown

include the following:

a. FdxInit - initializes API S/W Library.

 FdxInit is the first function call to be issued. It returns

the names of available servers at px_ServerNames. If

px_ServerNames = "local", the AFDX board is

located where the API is running. If px_ServerNames

= "NULL", the end of the list has been reached.

Note: This version will only return "local" indicating that the AFDX board is

located where the API is running. To connect to an AIM Network Server

containing AFDX boards, use FdxQueryServerConfig.

b. FdxQueryServerConfig - obtains the number of boards and their configuration.

(Also allows for a connection to an AIM Network Server (ANS) containing

AFDX boards.)

 Once the Application interface has been initialized, the FdxQueryServerConfig

function should be used to obtain the configuration of the AFDX boards on

the computer/server.

 FdxQueryServerConfig returns the list of resources using the structure TY-

RESOURCE_LIST_ELEMENT. The resource information returned includes a

resource ID, whether the resource is a board or port, board name. This

Initialization
(1) API Library

(2) Board Login

(3) Port Login

1

ARINC664 / AFDX Programmer’s Guide 43

information is used to login to the board and port(s) using the function

FdxLogin.

Note: This function can be used to connect to a remote ANS PC. If an

ac_SrvName other than “local” is specified this function checks that PC

to determine if a valid ANS is found. If a valid ANS is found on the

specified PC this function connects to that server and returns a list of

available resources of that PC.

c. FdxLogin - establishes target communication for a specific resource.

 For each resource in the system, the resource (board and port) must then be

logged into using the server name "local" or the name of remote ANS, and the

Resource ID returned by FdxQueryServerConfig. FdxLogin also requires as

input information about the client, using the TY_FDX_CLIENT_INFO structure.

MSWindows functions, GetComputerName and GetUserName can be used

to obtain this information

Note: For login to ports to be configured as redundant, only the first resource

ID of the two physical ports can be used.

d. FdxCmdBoardControl - used to control the

global setting of the board.

 The purpose of this function is to setup the

port configuration (single or redundant) and

the port speed (10 Mbps or 100 Mbps

(default) or auto negotiation). In addition, this

function sets up the board to verify the MAC

and/or IP header (1st 32 bytes of a frame) against either a customer defined value,

an AFDX specific register, or Boeing specific register or the default register

which is defined by the program-specific board type. The physical ports of the

board are configurable in two different ways.

 Single - The port works as a single port. This means that the accessible

port is represented by one physical port. In this mode it is possible to do

traffic policing for this port.

 Redundant - The port works as a redundant port. This means that the

accessible port is represented by two physical ports which are redundant.

In this mode, the AFDX Redundancy Management Algorithm (RMA) is

active and only the RMA passed frame is transmitted to the application.

For login to that port only the first resource ID of the two physical ports

can be used. A login to the second resource will cause an error. If the

Board Setup
(1) single or redundant mod, bit

rate & MAC/IP header

verification register

(2) IRIG time

2

ARINC664 / AFDX Programmer’s Guide 44

first of two ports is set to redundant mode, the second port will also be set

to redundant mode. For the redundant port mode both physical ports are

managed by one BIU.

...prior to termination:

e. FdxLogout - This function

closes the application interface
for the specified (board and

port) resource and must be

called last in an application

program for all opened

resources. After calling this

function the handle is invalid

and it is not possible to use it for

further function calls.

The following code demonstrates the Initialization, Board Setup, Login and Logout

Functions.

The code first searches through the list of servers found using FdxInit, and when "NULL" is

found, the end of the list has been reached. If "local" was in the list, an AFDX board has been

found on the local computer/server. This name, "local", is then used in the

FdxQueryServerConfig function.

The code continues to search in the Resource List returned by FdxQueryServerConfig until

"NULL" is found indicating the end of the list has been reached. If the resource is a board, the

board is logged into, and the board handle is obtained. If the resource is a port, then the port is

logged into and the port handle is returned. These handles will be used for all future API

function calls. .

The code configures the ports on the board to single (i.e., not redundant).
AiChar ServerName[128] = "local";

bool bRetSuccess = false;

bool bFoundLocalServer = false;

TY_SERVER_LIST * px_ServerList = NULL;

TY_SERVER_LIST * px_TmpServer;

TY_RESOURCE_LIST_ELEMENT * pRLE = NULL;

TY_RESOURCE_LIST_ELEMENT * pRLEHead = NULL;

TY_FDX_CLIENT_INFO x_ClientInfo;

AiUInt32 ul_HandleBoard = 0, ul_HandlePort1 = 0, ul_HandlePort2 = 0;

printf("\r\n FdxInit() \r\n");

if(FdxInit(&px_ServerList) != FDX_OK)

{

 printf("FdxInit Failed!!!\n");

8

Stop Tx/Rx - Shutdown
(1) Stop Tx/Rx

(2) Free Resources

(3) Destroy Port (for VL-Oriented mode) or Delete

Monitor Queue (For Chronologic Receive

mode)

(4) Logout of each resource (Board and Port(s))

ARINC664 / AFDX Programmer’s Guide 45

 // free the server-list

 if (px_ServerList != NULL)

 {

 FdxCmdFreeMemory(px_ServerList, px_ServerList->ul_StructId);

 }

 return(bRetSuccess);

}

// search the server-list for local server

px_TmpServer = px_ServerList;

while ((px_TmpServer != NULL) && (!bFoundLocalServer))

{

 if (stricmp(px_TmpServer->auc_ServerName, "local") == 0)

 {

 bFoundLocalServer = true;

 }

 else

 {

 px_TmpServer = px_TmpServer->px_Next;

 }

}

if (bFoundLocalServer)

{ // ok, we found a local server

 // lets query the configuration of this server

 if (FdxQueryServerConfig("local", &pRLEHead) == FDX_OK)

 {

 pRLE = pRLEHead;

 while (pRLE != NULL)

 { //--- login to resources

 switch(pRLE->ul_ResourceType)

 {

 case RESOURCETYPE_BOARD:

 // Board Login

 if (ul_HandleBoard == 0)

 {

 if (FdxLogin("local", &x_ClientInfo, pRLE->ul_ResourceID, 0,

 &ul_HandleBoard) != FDX_OK)

 {

 ul_HandleBoard = 0;

 printf("Board Login Failure!!!\n");

 }

 break;

 case RESOURCETYPE_PORT:

 // Port Login

 if (ul_HandlePort1 == 0)

 {

 if (FdxLogin("local", &x_ClientInfo, pRLE->ul_ResourceID, 0,

 &ul_HandlePort1) != FDX_OK)

 {

 ul_HandlePort1 = 0;

 printf("Port 1 Login Failure!!!\n");

 }

 }

 else

 if (ul_HandlePort2 == 0)

 {

 if (FdxLogin("local", &x_ClientInfo, pRLE->ul_ResourceID, 0,

 &ul_HandlePort2) != FDX_OK)

 {

 ul_HandlePort2 = 0;

 printf("Port 2 Login Failure!!!\n");

 }

 }

ARINC664 / AFDX Programmer’s Guide 46

 break;

 }

 pRLE = pRLE->px_Next;

 }

This completes the Initialization and Login of the board.

Now let's perform Board Setup for single (not redundant mode), and Verification mode set to

compare agains the AFDX program specific verification register.
// perform board setup

int i;

TY_FDX_BOARD_CTRL_IN x_BoardCtrlIn;

TY_FDX_BOARD_CTRL_OUT x_BoardCtrlOut;

memset(&x_BoardCtrlIn, 0, sizeof(x_BoardCtrlIn));

memset(&x_BoardCtrlOut, 0, sizeof(x_BoardCtrlOut));

if (ul_HandleBoard > 0)

{

 //--- init input structure

 for (i=0; i<FDX_MAX_BOARD_PORTS; i++)

 {

 x_BoardCtrlIn.aul_PortConfig[i] = FDX_SINGLE;

 x_BoardCtrlIn.aul_PortSpeed[i] = FDX_100MBIT;

 x_BoardCtrlIn.aul_ExpertMode[i] = FDX_EXPERT_MODE;

 }

 x_BoardCtrlIn.ul_RxVeriMode = FDX_BOARD_VERIFICATION_TYPE_AFDX;

 //--- reset board

 if (FDX_OK != (FdxCmdBoardControl(ul_HandleBoard, FDX_WRITE, &x_BoardCtrlIn,

 &x_BoardCtrlOut)))

 {

 printf("Board Reset Failure!!!\n");

 }

 else

 {

 printf("Board Initialized\n");

 }

}

This completes Board Setup.

..... and prior to termination, Logout of each resource (board and port).
// Close Device

if (ul_HandleBoard != 0)

{

 if (FDX_ERR == FdxLogout(ul_HandleBoard)) {

 printf("FdxLogout Board Error.\n");

 }

 else {

 printf("FdxLogout Board done.\n");

 }

}

if (ul_HandlePort1 != 0)

{

 if (FDX_ERR == FdxLogout(ul_HandlePort1)) {

 printf("FdxLogout Error 1.\n");

 }

 else

 {

 printf("FdxLogout Port1 done.\n");

 }

}

if (ul_HandlePort2 != 0)

ARINC664 / AFDX Programmer’s Guide 47

{

 if (FDX_ERR == FdxLogout(ul_HandlePort2))

 {

 printf("FdxLogout Error 2");

 }

 else

 {

 printf("FdxLogout Port2 done.\n");

 }

}

Note: In addition to Board and Port Logout, Monitor Queue, and or Tx/Rx UDP Port must

also be deleted/destroyed if previously created prior to termination

(FdxCmdMonQueueControl, FdxCmdTxUDPDestroyPort, and

FdxCmdRxUDPDestroyPort).

Note: Before Programm exit (close of library) call FdxExit() to free resource list.

/* free the resource list, the device list and the server list */

 if (FDX_OK != FdxExit())

 printf("\r\n FdxExit() FAIL");

ARINC664 / AFDX Programmer’s Guide 48

4.1.2 Getting AIM Board Status and Configuration Information

Once you have initialized and opened the connection to the AIM board as described in the

previous section, you can obtain the status of the configuration of the board and the software

versions contained on your AIM board. The system functions that perform this status are as

follows:

a. FdxQueryResource - Obtains information about the board or port resource,

including board name, serial number, physical ports available, etc., and which

clients are using this resource.

b. FdxReadBSPVersion - Returns the version number of all AIM board software

package components

c. FdxCmdBITETransfer - Performs some transfer tests using available port

resources of one FDX board. This function will determine the number of ports

on the board. If only two ports, it will test them against each other. If four ports

are used, Port 1 and Port 2 will be tested against each other and Port 3 and Port 4

will be tested against each other

 Port 1 and Port 2 must be connected with a Loop-Back cable (crossover), if

available Port 3 and Port 4 must be connected with a Loop-Back cable

(crossover).

Note: This test should be performed prior to login. Only “local” operation of

the resources supported.

d. FdxCmdBoardControl - this function can also be used to read back the

configuration of the board including: port configuration (single or redundant),

port speed, connection/link status, and size of free global and shared memory.

ARINC664 / AFDX Programmer’s Guide 49

4.1.3 Utilizing IRIG-B

The API S/W Library provides one System function call to

setup/read/write IRIG-B time, and three Target Independent

Administration Functions to convert and calculate IRIG-B time

including:

a. FdxCmdIrigTimeControl- Sets/writes the IRIG-

B time on the on-board IRIG timecode encoder, or

allows the IRIG-B input to be received from an external source.

b. FdxFwIrig2StructIrig - converts the IRIG-B time from firmware format to 32-

bit values for each hour, minute, second, day, millisecond and microsecond

value.

 This function may be required to reformat the IRIG time from the

received frames through functions FdxCmdRxUDPRead and

FdxCmdMonQueueRead (See Section 4.3.1.1 for coding example.)

c. FdxStructIrig2FwIrig - converts the IRIG-B time from the structure format

(provided with FdxFwIrig2StructIrig) to the Firmware format

d. FdxAddIrigStructIrig and FdxSubIrigStructIrig - adds or subtracts two

Structured IRIG values.

The following is an example of the FdxCmdIrigTimeControl and FdxAddIrigStructIrig.

Notice the declaration of the x_IrigTimeA, B and C as type TY_FDX_IRIG_TIME.

TY_FDX_IRIG_TIME is defined in the AiFdx_def.h header file.

Note: To obtain an accurate time stamp value you should delay the immediate reading of the

IRIG time.

Note: IRIG time starts with "DAY one" (First of January) not with "DAY zero".

 AiInt32 r_RetVal;

 TY_FDX_IRIG_TIME x_IrigTimeA, x_IrigTimeB, x_IrigTimeC;

 AiUInt32 ul_Mode;

 time_t clock; /* Posix */

 struct tm *pxSystemTime; /* Posix */

 /* Read Irig Time (A) */

 if (FDX_OK != (r_RetVal = FdxCmdIrigTimeControl(ul_Handle, FDX_IRIG_READ,

 &x_IrigTimeA, &ul_Mode)))

 {

 printf("\r\nFdxCmdIrigTimeControl() failed.");

 }

 /* Set Irig Time to Day 001:00:00:00.000 */

 x_IrigTimeB.ul_Day = 1;

Board Setup
(1) single or redundant mode

& bit rate

(2) IRIG time

2

ARINC664 / AFDX Programmer’s Guide 50

 x_IrigTimeB.ul_Hour = 0;

 x_IrigTimeB.ul_Min = 0;

 x_IrigTimeB.ul_Second = 0;

 x_IrigTimeB.ul_MilliSec = 0;

 x_IrigTimeB.ul_MicroSec = 0;

 x_IrigTimeB.ul_NanoSec = 0;

 x_IrigTimeB.ul_Info = 0;

 if (FDX_OK != FdxCmdIrigTimeControl(ul_Handle, FDX_IRIG_WRITE, &x_IrigTimeB,

 &ul_Mode))

 printf("\r\nFdxCmdIrigTimeControl() failed.");

 AIM_WAIT(6000);

 /* And Read it Back after 6 seconds (B) */

 if (FDX_OK != FdxCmdIrigTimeControl(ul_Handle, FDX_IRIG_READ, &x_IrigTimeB,

 &ul_Mode))

 printf("\r\nFdxCmdIrigTimeControl() failed.");

 /* Add Irig A and Irig B */

 x_IrigTimeC = FdxAddIrigStructIrig(&x_IrigTimeA, &x_IrigTimeB);

 /* Set Irig Time To Host Time */

 clock = time((time_t*)NULL);

 pxSystemTime = localtime(&clock);

 x_IrigTimeA.ul_Day = pxSystemTime->tm_yday +1;

 x_IrigTimeA.ul_Hour = pxSystemTime->tm_hour;

 x_IrigTimeA.ul_Min = pxSystemTime->tm_min;

 x_IrigTimeA.ul_Second = pxSystemTime->tm_sec;

 x_IrigTimeA.ul_MilliSec = 0;

 x_IrigTimeA.ul_MicroSec = 0;

 x_IrigTimeA.l_Sign = 0;

 if (FDX_OK != FdxCmdIrigTimeControl(ul_Handle, FDX_IRIG_WRITE, &x_IrigTimeA,

 &ul_Mode))

 printf("\r\nFdxCmdIrigTimeControl() failed.");

 AIM_WAIT(6000);

 /* Set source to external */

 if (FDX_OK != FdxCmdIrigTimeControl(ul_Handle, FDX_IRIG_EXTERN, NULL, &ul_Mode))

 printf("\r\nFdxCmdIrigTimeControl() failed.");

 /* Set source to intern */

 if (FDX_OK != FdxCmdIrigTimeControl(ul_Handle, FDX_IRIG_INTERN, &x_IrigTimeB,

 &ul_Mode))

 printf("\r\nFdxCmdIrigTimeControl() failed.");

4.1.4 Interrupt Handling

If setup by the user, interrupts can be generated by the Receiver functions. (Interrupts for

Transmit operations are planned for future enhancements.) The type of interrupts available and

the associated setup function required to setup the interrupt is defined in Table 4-6. Figure 4-2

shows the basic steps involved in setting up and creating an application utilizing interrupts.

ARINC664 / AFDX Programmer’s Guide 51

Table 4-6 Available Interrupt Types and Related Function Call

Transmitter Receiver
FdxCmdTxQueueWrite*

Interrupt when BIU is instructed to stop

or synchornize.

*In Future API

FdxCmdRxVLControlEx

Interrupt on:

- Frame Reception for user-specified VL

- Frame Error for a user-specified VL

- Buffer Full/ Half Full/Quarter Full for a

user-specified VL

FdxCmdMonTCBSetup

Interrupt on:

- Trigger Control Block event is true.

The FdxInstIntHandler and FdxDelIntHandler function calls are used to setup and remove

the interrupt setting for a specified BIU. These functions are discussed below and sample code

is provided demonstrating Interrupt setup using these functions. The additional software setup

required for the BC, RT, BM, and/or Replay function call(s) is discussed in the associated

section of this document:

The functions available to setup interrupts and interrupt handler execution include the following

Library Administration functions:

a. FdxInstIntHandler - Provides a pointer to the interrupt handler function. The

following code installs an Interrupt Handler function named

userInterruptFunction to handle interrupts generated by the Rx

Monitor (FDX_INT_RT).

//Install Interrupt Handler function to handle Receive monitor interrupts

FdxInstIntHandler(ul_Handle, FDX_INT_RX, userInterruptFunction);

 The Interrupt Handler function is a function that you create to perform

application specific processing based on the type of interrupt received.

 Only one interrupt handler is required, however, you can also create one

interrupt handler for each type of interrupt. (Currently only Receive

interrupts are available for processing.)

 Interrupt Handler function input parameters must follow a pre-defined

format as defined in the FdxInstIntHandler function call in the

Reference Manual AFDX/ ARINC-664:

void userInterruptFunction(AiUInt8 bModule, AiUInt8 uc_Port,

 AiUInt8 uc_Type,TY_FDX_INTR_LOGLIST_ENTRY x_Info)

ARINC664 / AFDX Programmer’s Guide 52

b. FdxDelIntHandler - Removes the pointer interface to the interrupt handler

function. This function should be called prior to the module close (FdxLogout).

The following code uninstalls an Interrupt Handler function named

userInterruptFunction to handle interrupts generated by the Rx

Monitor (FDX_INT_RT).

 //Uninstall the Receive interrupt handler function(s)

FdxDelIntHandler(ul_Handle, FDX_INT_RX);

Further definition and examples of these interrupt scenarios can be found in the

afdx_Sample.exe (included in the BSP with sources).

ARINC664 / AFDX Programmer’s Guide 53

Figure 4-2 Interrupt Setup Process

Decide which type of interrupt is required for

your application

Create an

 Interrupt Handler

application to process

interrupt/data when

interrupt occurs.

Include function call FdxInstIntHandler

to intialize the BIU with a pointer to your

Interrupt Handler.

Setup the Transmitter/Receiver

function(s) interrupt(s) as required

by your application.

Delete the the host-to-AIM board

interrupt setup prior to the end of

your application using

FdxDelIntHandler.

1

2

3

4

ARINC664 / AFDX Programmer’s Guide 54

4.2 Transmitter Programming

The AFDX transmit port can be configured in one of three AFDX-Traffic Generation modes of

data transmission as listed below:

a. UDP Port-Oriented Simulation - This mode simulates the AFDX Comm ports

(defined by ARINC-653) and SAP ports. AFDX Comm Ports communicate via a

static "connection" i.e., the IP/UDP Source/Destination addresses are contained

in the AFDX frame header are fixed. SAP ports, however, are "connectionless"

i.e., the E/S application

can dynamically

determine the destination

address (IP address and

UDP port number) for

messages transmitted,

and messages can be

received from multiple

sources.

 An AFDX Comm port provide two different types of services:

 Queuing service - AFDX messages are sent over several AFDX frames

(fragmentation by IP layer), no data is lost or overwritten.

 Sampling service - AFDX messages are sent in 1 frame, data may be

lost or overwritten.

 The end-systems, VLs, and partitions are represented by the IP-Addresses and

communication-end points are described by the AFDX Comm UDP-Port.

 SAP ports can also transmit and receive AFDX messages that are sent over one

or more AFDX frames, however, the protocol for that communication is not

determined by ARINC 653.

b. Generic Transmit Operation - This mode provides maximum flexibility and is

based on a frame based transmission sequence. Each frame provides information

about the relative timing between the frames, error injection, payload-generation

modes, transmission skew in redundant operation mode and/or special events like

a digital output strobe-signal. For high-throughput, special payload-generation

modes can be used, so the hardware takes parts of the frame-data from static

send-fields. Because all frames must be pre-buffered on the hardware, the

number of frames is limited to the board-resources.

UDP Layer UDP Layer

Application(s)Application(s)

AFDX

Comm

Port

Q SQ Q S Q S
SAP

Port

UDP Layer UDP Layer

Application(s)Application(s)

AFDX

Comm

Port

Q SQ Q S Q S
SAP

Port

ARINC664 / AFDX Programmer’s Guide 55

c. Replay Operation

 Physical Re-Transmission of pre-recorded network traffic (or real-time

playback of data captured while in Record mode.)

Table 1-1 defines the key features and differences between the UDP-Port Oriented transmission

mode and the Generic Transmission mode.

If your application requires the generation of AFDX traffic, this section will provide you with

the understanding of the Transmitter programming functions required for use within your

application. Regardless of the transmission mode you select, Global Transmitter functions must

be performed first. This section will describe Transmitter Functions as follows:

a. Global Transmitter Functions

 Port Initialization & Tx Mode Setup

 Transmission Control

 Strobe Input/Output Usage (optional)

 Global Transmit Status

b. UDP Port-Oriented Simulation

 Creating the Virtual Link and Sub VL UDP Port

 Writing messages to the UDP Port

 Individual UDP Port Error Injection, Skew

 Individual UDP Port Status and Enable/Disable

c. Generic Transmit

 Allocating a Transmit Queue

 Defining Frames and Writing to the Transmit Queue

 Generic Transmit Queue Status

d. Replay

 Allocating a Transmit Queue

 Writing a Replay file to the Transmit Queue

ARINC664 / AFDX Programmer’s Guide 56

 Replay Transmit Queue Status.

4.2.1 Global Transmitter Functions

Global Transmitter functions are the functions that apply to all modes of operation (UDP Port-

Oriented, Generic Transmit or Replay). The major functions of the Global Transmitter functions

include:

a. Port Initialization & Tx Mode Setup

b. Transmission Control

c. Strobe Input/Output Usage (optional)

d. Global Transmit Status

These Global Transmitter function are described in the following sections.

 Port Initialization and Tx Mode Setup

After the Board setup is complete, as defined in Section 4.1, an individual Transmit Port can be

initialized and the mode can be configured for either

UDP Port-Oriented, Generic Transmit or Replay

Mode using the functions listed below. Once the

mode has been configured, the user can then

program the port transmission protocol and data

characteristics as defined in the section applicable to

the mode (Section 4.2.1- 1.1.1).

a. FdxCmdTxPortInit - will perform initialization and reset of the Transmit port

global characteristics. This must be the first Transmitter function call issued.

The user must assign a Portmap ID to each Tx port. This Portmap ID is a

virtual ID assigned to the physical Port. State after initialization includes:

 No Transmit Queues defined- this is referring to the queue assigned to a

port with the FdxCmdTxQueueCreate function call (for Generic &

Replay Transmit mode).

 No VL created, no UDP port created - this is referring to the VL and

port created with the FdxCmdTxCreateVL and

FdxCmdTxUDPCreatePort functions (for UDP Port-Oriented

Simulation mode)

b. FdxCmdTxModeControl - provides configuration for the three transmit modes

including:

3

Port Tx Setup
(1) Assign Portmap ID to each Tx port

(2) Define Transmitter mode (UDP Port-

Oriented or Generic Transmit)

ARINC664 / AFDX Programmer’s Guide 57

 UDP Port-Oriented Simulation - This mode simulates the AFDX

Comm and SAP UDP ports as defined by the AFDX End System Detailed

Functional Specification.

 Generic Transmit Operation - This mode provides maximum flexibility

and is based on a frame based transmission sequence. Each frame

provides information about the relative timing between the frames, error

injection, payload-generation modes, transmission skew in redundant

operation mode and/or special events like a digital output strobe-signal.

For high-throughput, special payload-generation modes can be used, so

the hardware takes parts of the frame-data from static send-fields.

Because all frames must be pre-buffered on the hardware, the number of

frames is limited to the board-resources.

 Replay Operation - Physical Re- Transmission of recorded network

traffic or (or real-time playback of data captured while in Record mode.)

The following code example uses API S/W Library constants to initialize one port using a

Portmap equal to 1 and configures the mode to Generic Transmit. The port handle was

previously obtained using FdxLogin.

 TY_FDX_PORT_INIT_IN x_PortInitIn;

 TY_FDX_PORT_INIT_OUT x_PortInitOut;

 TY_FDX_TX_MODE_CTRL x_TxModeCtrl;

 //--- Initialization

 x_PortInitIn.ul_PortMap = 1;

 if (FDX_OK != (FdxCmdTxPortInit(ul_HandlePort, &x_PortInitIn, &x_PortInitOut)))

 {

 printf("Port Reset failure!!!\n");

 }

 else

 {

 printf("Port Transmitter Initialized\n");

 }

 //--- mode control -> Set TX port to Generic mode

 x_TxModeCtrl.ul_TransmitMode = FDX_TX_GENERIC;

 if (FDX_OK != (FdxCmdTxModeControl(ul_HandlePort, &x_TxModeCtrl)))

 {

 printf("Port Mode Control Failure!!!\n");

 }

 else

 {

 printf("Port set to Generic Transmit mode\n");

 }

ARINC664 / AFDX Programmer’s Guide 58

 Transmission Control

After all protocol and data characteristics of the port

have been programmed (as defined in Section 4.2.2 -

4.2.4), the method used to start/stop transmission of the

data should be defined. There are two global functions

providing Tx Control:

a. FdxCmdTxControl - defines how and

when to start transmission for a

Physical port and the length of transmission including:

 Starting/Stopping the transmitter - provides for:

1. Starting/stopping the transmitter on command

2. Starting the transmitter based on an external strobe input

3. Starting the transmitter based on a specified start time

 Cyclic or user-specified number of transmissions for the frames

defined in the Transmit Queue when in Generic Transmit mode. (In

Replay the number of frames transmitted depends on the size of the

Replay file. In UDP Port-Oriented Simulation, the transmission rate for

an AFDX Comm port is defined by FdxCmdTxUDPCreatePort (for

Sampling port), and the transmission is initiated when data is written to

the port using FdxCmdTxUDPWrite or FdxCmdTxUDPBlockWrite

(for a Queuing port). For a SAP port, transmission is initiated with

FdxCmdTxSAPWrite or FdxCmdTxSAPBlockWrite.)

b. FdxCmdTxVLControl - provides the user with the option to enable/disable an

individual VL as defined in either the UDP Port-Oriented Transmit mode or

Generic Transmit mode. The default condition of a VL is enabled, therefore, this

function is not required unless you choose to disable individual VLs.

Note: Lower level Sub VL (UDP Port) enable/disable control

(FdxCmdTxUDPControl) is available when in UDP Port-Oriented

Transmit mode as discussed in Section 4.2.2.3.

The following code configures a port to transmit AFDX frames cyclically

(x_TxControl.ul_count = 0 (Generic Transmit mode only)) and to start immediately

upon this command.
 TY_FDX_TX_CTRL x_TxControl;

 x_TxControl.ul_Count = 0; //0 value indicates cyclic transmission

 x_TxControl.e_StartMode = FDX_START;

 if (ul_HandlePort != NULL)

 {

 if (FDX_OK != (FdxCmdTxControl(ul_HandlePort, &x_TxControl))) {

5

Start Tx
(1) Send the AFDX frame cyclically or

a certain number of times

(2) Setup to start immediately or wait

for start time/strobe input

ARINC664 / AFDX Programmer’s Guide 59

 printf("Failure to start transmitter\n");

 }

 else {

 printf("Transmitter started\n");

 }

 }

ARINC664 / AFDX Programmer’s Guide 60

 Trigger Input/Output Usage

As a programming option, the trigger input/output signals for the Transmitter ports can be used

in various ways to control transmission of AFDX frames or to indicate the occurrence of a

specific frame transmission as shown in Table 4-7. This table indicates the functions required to

utilize the trigger signals to control transmission of AFDX frames and in which transmit modes

these functions are applicable.

Please refer also to the hardware manual associated with the board type for information on how

to connect external devices to the trigger input/output signals of your AIM ARINC664 device.

Table 4-7 Trigger Input/Output Transmitter Functions

Function

Type

Applicable

mode

API Function
Strobe- In

Function

Strobe-Out

Function

U
D

P
 P

o
rt

-

O
ri

en
te

d

G
en

er
ic

 T
ra

n
sm

it

Global

Transmitter
X X FdxCmdTxTrgLineControl

Defines the strobe Input/Output lines to be

used for the receive ports

Global

Transmitter
X X FdxCmdTxControl

Strobe-in to Start

transmitter*

Generic

Transmit

Operation

 X FdxCmdTxQueueWrite

Strobe-in to Start

transmission of this

frame *

Strobe-out on

transmission of this

frame.

* In redundant operation mode, the strobe input for port A shall be the same strobe input

resource for Port B.

 Global Transmit Status

The Global Transmitter function group includes one function

call, FdxCmdTxStatus, that provides you with the capability to

obtain the following status:

a. Transmitter status - Stopped/Running/Error

b. Frames Transmitted - for primary and redundant port (if programmed in

Redundant mode using the FdxCmdBoardControl Board Setup function)

c. Mode - Generic Transmit, UDP Port-Oriented, or Replay.

7

Retrieve Status
(1) Tx Status

(2) Rx Status

(3) Retrieve Captured data

ARINC664 / AFDX Programmer’s Guide 61

Additional lower level status can be obtained when in UDP Port-Oriented Transmit mode by

using the function FdxCmdTxUDPGetStatus, and, when in the Generic or Replay Transmit

mode, by using FdxCmdTxQueueStatus as described in Sections 4.2.2.4, 4.2.3.3 and 4.2.4.3

respectively.

ARINC664 / AFDX Programmer’s Guide 62

4.2.2 UDP Port-Oriented Simulation Mode

When operating in UDP Port-Oriented

Simulation mode AFDX Comm ports

(connection oriented) and SAP ports

(connectionless) are simulated.

The functions described in this section

should be used after the port has been

configured for UDP Port-Oriented

Simulation using the function FdxCmdTxModeControl, as described in Section 4.2.1.1.

Setting up the port when in UDP Port-Oriented Simulation mode consists of the following main

functions:

a. Creating the Virtual Link and Sub VL

(UDP Port)

b. Writing messages to UDP Port

c. Individual UDP Port Error Injection, Skew

and Enable/Disable (optional)

d. Individual UDP Port Status

e. Changing the source of a UDP while transmit is enabled.

 Creating the Virtual Link and Sub VL

The following functions are associated with VL and Sub VL (UDP Port) creation for a defined

port.

a. FdxCmdTxCreateVL or FdxCmdTxCreateHiResVL - these functions will

define the characteristics associated with the VL as listed in the example below.

Only one function is needed. The FdxCmdTxCreateHiResVL provides a

higher resolutionBAG as defined below. These characteristics will apply to all

SubVLs associated with the VL.

VL ID BAG

Max

Frame

Length

Frame

Buffer

Size

MAC Source

Address

Network

Control

(applicable to

Redundant

mode only)

02:00:00:01:21:20 A+B at once

FdxCmdTxCreateVL

0 1 ms 147 bytes 0

UDP Port-Oriented Setup
(1) Define the VL & Sub VL

characteristics

(2) Write UDP port messages created

to Tx port

UDP Layer UDP Layer

Application(s)Application(s)

AFDX

Comm

Port

Q SQ Q S Q S
SAP

Port

UDP Layer UDP Layer

Application(s)Application(s)

AFDX

Comm

Port

Q SQ Q S Q S
SAP

Port

ARINC664 / AFDX Programmer’s Guide 63

 For function

FdxCmdTxCreateVL,

BAG values are in

milliseconds: 1, 2, 4, 8,

16, 32, 64, 128. For function FdxCmdTxCreateHiResVL, higher

resolution BAG values can be specified anywhere within the range of 800

µsec to 128000 µsec.

 Max Frame Length includes all fields shown below (except the

Preamble and Start Delimiter):

 Frame Buffer Size - Allows the user to specify the size of the VL Buffer

(needed when using function FdxCmdTxVLWrite or

FdxCmdTxVLWriteEx. If set to 0, the target software computes the

length of this buffer.)

 Network Control - Allows the user to specify how frames are transmitted

when in redundant mode. i.e., whether Port A/B frames are transmitted

skewed, in-sync or only Port A or only Port B.

b. There are two sets of functions associated with creation of the UDP Tx port:

AFDX Comm port functions and SAP functions as described below:

 For AFDX Comm Port (Sampling or Queuing Connection-oriented port):

 FdxCmdTxUDPCreatePort - this function will define the characteristics

associated with the Sub VL AFDX Comm Sampling/Queuing port

associated with a VL as listed in the example below. These

characteristics will apply to all SubVLs associated with the VL. Up to

four Sub VLs can be defined for one VL. A UDP Handle to this UDP

Port Sub VL is returned when this command is issued successfully. The

handle is used for all further communication/control of the Sub VL

(AFDX Comm UDP Port). An AFDX Comm port is connection-oriented,

therefore, the entire address quintuplet is specified for the create port

function to define the point-to-point connection.

Preamble
Start

Delimiter

MAC

Header

IP

Header

UDP

Header AFDX Payload FCS

7 1 12 22 17…1471 48

AFDX

Sequence

Number

1

Preamble
Start

Delimiter

MAC

Header

IP

Header

UDP

Header AFDX Payload FCS

7 1 12 22 17…1471 48

AFDX

Sequence

Number

1

Frame-Size

BAG

F3
F1 F2

BAG

F3
F1 F2

Message

ARINC664 / AFDX Programmer’s Guide 64

Sampling Rate - values start with 1 milliseconds in multiples of 1. This

is the rate at which the AFDX frame will be transmitted cyclically

at a Sampling Port.

Maximum Message Size - the size of the AFDX Payload Message. The

size is fixed for Sampling ports. For queuing ports, it is the

maximum size of the complete message to be fragmented and

transmitted out the queuing port.

Number of Buffered Messages - for a Sampling Port this is always 1.

For a Queuing Port, this indicates the number of complete

messages (with size = to max Message size) that may be buffered

for transmission. The default value is 2.

The following code creates one VL (VL 33) and two Sub VLs (UDP port 1 and UDP port 2)

both configured as Sampling ports.

 //--- create VL, define communication parameters for VL 33 on Port

 x_TxCreateVL.ul_VlId = 33; /* VL */

 x_TxCreateVL.ul_SubVls = 1; /* Number of Sub VLs */

 x_TxCreateVL.ul_Bag = 32; /* BAG [ms] */

 x_TxCreateVL.ul_MaxFrameLength = 1000; /* Maximum Frame Length [bytes] */

 x_TxCreateVL.ul_FrameBufferSize = 0; /* Default Frame Buffer Size */

 x_TxCreateVL.ul_MACSourceLSLW = 0x00089aC0; /* MAC Source */

 x_TxCreateVL.ul_MACSourceMSLW = 0x00000200; /* MAC Source */

 x_TxCreateVL.ul_NetSelect = FDX_TX_FRAME_BOTH;

 x_TxCreateVL.ul_Skew = 0;

 if (FDX_OK != (FdxCmdTxCreateVL (ul_Handle,&x_TxCreateVL))) {

 printf("VL Creation on Port failed!!!\n");

 }

 else {

 printf("VL Created 33 \n");

 }

 //--- create udp-port 1 for write on Port

 x_TxUDPDescription.ul_PortType = FDX_UDP_SAMPLING; /* Sampling Port */

 x_TxUDPDescription.x_Quint.ul_UdpSrc = 23;

 x_TxUDPDescription.x_Quint.ul_UdpDst = 24;

 x_TxUDPDescription.x_Quint.ul_VlId = 33;

 x_TxUDPDescription.x_Quint.ul_IpSrc = ul_GenerateIp("10.1.33.1");

 x_TxUDPDescription.x_Quint.ul_IpDst = ul_GenerateIp("224.224.0.33");

 x_TxUDPDescription.ul_SubVlId = 1;

 x_TxUDPDescription.ul_UdpMaxMessageSize = 200;

 x_TxUDPDescription.ul_UdpNumBufMessages = 1; /* 0=default */

 x_TxUDPDescription.ul_UdpSamplingRate = 100; /* [ms] */

Sub VL ID

Type

(Sampling

or

Queuing)

Sampling

Rate Source IP

Destination

IP

Source

UDP

Destination

UDP

Maximum

Message Size

Number of

buffered

messages

1 Sampling 10 ms 10.1.33.1 224.224.0.0 1 1 100 bytes 1

2 Sampling 10 ms 10.1.33.1 224.224.0.0 2 2 90 bytes 1

3 Sampling 10 ms 10.1.33.1 224.224.0.0 3 3 80 bytes 1

4 Queuing 10.1.33.1 224.224.0.0 4 4 max. 8000 bytes 3

FdxCmdTxUDPCreatePort

ARINC664 / AFDX Programmer’s Guide 65

 if (FDX_OK != (FdxCmdTxUDPCreatePort (ul_Handle,&x_TxUDPDescription,

 &ul_Udp1Handle)))

 {

 printf("UDP Port Creation Failure on Port!!!\n");

 }

 else

 {

 printf("Tx UDP Port 1 Created.);

 }

 //--- create udp-port 2 for write on Port

 x_TxUDPDescription.ul_PortType = FDX_UDP_SAMPLING; /* Sampling Port */

 x_TxUDPDescription.x_Quint.ul_UdpSrc = 34;

 x_TxUDPDescription.x_Quint.ul_UdpDst = 42;

 x_TxUDPDescription.x_Quint.ul_VlId = 33;

 x_TxUDPDescription.x_Quint.ul_IpSrc = ul_GenerateIp("10.1.33.1");

 x_TxUDPDescription.x_Quint.ul_IpDst = ul_GenerateIp("224.224.0.33");

 x_TxUDPDescription.ul_SubVlId = 1;

 x_TxUDPDescription.ul_UdpMaxMessageSize = 300;

 x_TxUDPDescription.ul_UdpNumBufMessages = 1; /* 0=default */

 x_TxUDPDescription.ul_UdpSamplingRate = 50; /* [ms] */

 if (FDX_OK != (FdxCmdTxUDPCreatePort (ul_Handle,&x_TxUDPDescription,

 &ul_Udp2Handle)))

 {

 printf("UDP Port Creation Failure on Port!!!\n");

 }

 else

 {

 printf("Tx UDP Port 2 Created.);

 }

For SAP Port (Connectionless-oriented port):

 FdxCmdTxSAPCreatePort - this function will define the characteristics

associated with the Sub VL SAP port. Up to four Sub VLs can be

defined for one VL. A UDP Handle to this UDP Port Sub VL is returned

when this command is issued successfully. The handle is used for all

further communication/control of the Sub VL (UDP Port). The

characteristics for the SAP Tx port include only those listed below.

Remember, for a SAP port - since the port is "connectionless" it can

transmit to multiple E/S's and the destination is determined at the time of

transmission, therefore, only the Source IP/UDP addresses are required.

ARINC664 / AFDX Programmer’s Guide 66

Maximum Message Size - the size of the AFDX Payload Message. For

SAP ports, it is the maximum size of the complete message to be

fragmented and transmitted out the port.

Number of Buffered Messages - For a SAP Port, this indicates the

number of messages (with size = to max Message size) that may

be buffered for transmission at any time. The default value is 2.

 Writing Messages to the Port

Now that the MAC Header, IP Header and UDP Header have been defined, it is time to define

the data to be inserted into the AFDX Payload message portion of the AFDX frame.

There are two sets of functions for writing messages to the port - one for AFDX Comm ports

and one for SAP ports as defined in the following two sections.

 Writing Messages to the AFDX Comm Port

For AFDX Comm ports, writing AFDX Payload messages to the AFDX frame is accomplished

using the FdxCmdTxUDPWrite or FdxCmdTxUDPBlockWrite functions. These functions

can be executed while the transmitter is enabled (or disabled), but should be performed after

FdxCmdTxUDPCreatePort has been executed and a UDP Port handle obtained from that

function. The size of the message written to the port must be less than or equal to the Maximum

Message Size defined when creating the UDP port using FdxCmdTxUDPCreatePort.

FdxCmdTxUDPBlockWrite performs in the same manner as FdxCmdTxUDPWrite,

however, it allows the user to write to multiple ports with one function call. The transmission of

the message written to the port varies for a Sampling and Queuing Port as follows:

Sub VL ID Source IP Source UDP

Maximum Message

Size

Number of

buffered

messages

1 10.1.33.1 1 max. 8000 bytes 3

2 10.1.33.1 2 max. 8000 bytes 2

3 10.1.33.1 3 max. 8000 bytes 4

4 10.1.33.1 4 max. 8000 bytes 3

FdxCmdTxSAPCreatePort

Preamble
Start

Delimiter

MAC

Header

IP

Header

UDP

Header
AFDX Payload

Message

Sequence

Number FCS

7 1 14 20 8 17…1471 1 4bytes

ARINC664 / AFDX Programmer’s Guide 67

a. Sampling Port

 FdxCmdTxUDPWrite or FdxCmdTxUDPBlockWrite should be called

before the port is started (using FdxCmdTxControl) in order to initialize

the data contents of the UDP message buffer.

 If the message written to the port(s) is smaller than the Maximum

Message Size defined with FdxCmdTxCreatePort, the remaining bytes

at the end of the UDP Buffer (with size equal to Maximum Message Size)

will not be overwritten. (Remember - only one message can be written to

a sampling port at a time.)

 AFDX Frame will be transmitted at the Sampling Rate once the port is

started (using FdxCmdTxControl)

 If the message is to be updated each time the AFDX data frame is

transmitted, the FdxCmdTxUDPWrite or FdxCmdTxUDPBlockWrite

should be performed at the same sampling rate defined using

FdxCmdTxUDPCreatePort.

b. Queuing Port

 FdxCmdTxUDPWrite / FdxCmdTxUDPBlockWrite initiates the

transmission of the message(s).

 More than one message can be written to the queuing port using the

FdxCmdTxUDPBlockWrite function. Care should be taken to insure

that the number of messages written to the port does not exceed the

Message Buffer size defined with FdxCmdTxUDPCreatePort.

 The transmission of the entire message may require multiple AFDX frame

transmissions (fragmentation will be by IP layer).

The following code inserts a byte pattern of “050505…” into the AFDX Payload message

portion of the AFDX frame. The UDP Port Handle is obtained from the

FdxCmdTxCreatePort function.

 //Write message to UDP Tx Port

 /* create Data */

 ul_ByteCount = 100;

 for (i=0; i<ul_ByteCount; i++)

 uc_Data[i]=(AiUInt8)5;

 if (FDX_OK != (FdxCmdTxUDPWrite (ul_Handle, aul_UDPHandles[ul_HandleCnt],

 ul_ByteCount, uc_Data, &ul_BytesWritten)))

 {

 printf("FdxCmdTxUDPWrite failed!!!\n");

 return(FDX_ERR);

 }

 else

 {

 printf("FdxCmdTxUDPWrite() ul_BytesWritten:%ld", ul_BytesWritten);

ARINC664 / AFDX Programmer’s Guide 68

 }

Note: An alternative method of writing data to the port involves the use of the function

FdxCmdTxVLWrite or FdxCmdTxVLWriteEx. These functions allow the user to write

entire AFDX frames to the VL Buffer, therefore, providing maximum flexibility as to

the content of the port's transmit output. When using this function, the UDP

functions used to Create (FdxCmdTxUDPCreatePort), Destroy

(FdxCmdTxUDPDestroyPort), Write (FdxCmdTxUDPWrite), Control

(FdxCmdTxUDPControl) and Get Status (FdxCmdTxUDPGetStatus) are not applicable.

ARINC664 / AFDX Programmer’s Guide 69

 Writing Messages to the SAP Port

For SAP ports, writing AFDX Payload messages to the AFDX frame is accomplished using the

FdxCmdTxSAPWrite or FdxCmdTxSAPBlockWrite functions. These functions can be

executed while the transmitter is enabled (or disabled), but should be performed after

FdxCmdTxSAPCreatePort has been executed and a UDP Port handle obtained from that

function. The size of the data written to the port must be less than or equal to the Maximum

Message Size (maximum is 8Kbytes) defined when creating the UDP port using

FdxCmdTxSAPCreatePort. FdxCmdTxSAPBlockWrite performs in the same manner as

FdxCmdTxSAPWrite, however it allows the user to write AFDX message(s) (can be unique

for each port) to multiple ports with one function call. Transmission considerations for a SAP

port are as follows:

a. FdxCmdTxSAPWrite / FdxCmdTxSAPBlockWrite initiates the transmission

of the message(s).

b. More than one message can be written to the SAP port using the

FdxCmdTxSAPBlockWrite function. Care should be taken to insure that the

number of messages written to the port does not exceed the Message Buffer size

defined with FdxCmdTxSAPCreatePort.

c. The transmission of the entire message may require multiple AFDX frame

transmissions (fragmentation will be by IP layer).

 Individual UDP Port Error Injection, Skew and Enable/Disable

The function FdxCmdTxUDPControl provides the lowest level UDP port control available to

manipulate the individual Sub VLs (UDP ports) in the following manner:

Note: This function requires that the Transmit Port has been enabled via FdxCmdTxControl

function and the VL has not been disabled via the FdxCmdTxVLControl function. The

FdxCmdTxUDPControl is the lowest level port control function available, therefore, all

higher level functions (FdxCmdTxControl & FdxCmdTxVLControl) will supersede the

Sub VL UDP port level control imposed with FdxCmdTxUDPControl.

a. Inject errors for a certain number of AFDX frames, or cyclically, as defined in

Table 4-8.

ARINC664 / AFDX Programmer’s Guide 70

Table 4-8 Physical Error Injection

Error Type Description:

CRC Error CRC Error transmitted with this frame

Byte Alignment Error Wrong Byte alignment in transmit frame,
which means that an odd number of
nibbles will be transmitted. Therefore, this
error will also cause a CRC error
condition.

Preamble Error Wrong Preamble Sequence transmitted. If
this type is selected, the Encoder device
substitutes the first nibble of the Start
Frame Delimiter with the value ‘1000’
instead of ‘1001’

Physical Symbol ('HALT')
Error

Physical Symbol Error. During Frame
Transmission, the MAC-Encoder device
asserts the Tx-Error signal, which forces
the physical transceiver to transmit ‘HALT’
symbols.

b. For ports setup in redundant mode, skew by a user specified value or

enable/disable the primary/redundant port's frame transmission as defined below

and shown in Figure 4-3:

 Packet on Network A is delayed by the Skew value, related to Network B

 Packet on Network B is delayed by the Skew value, related to Network A

 Packet transmitted on both Networks (Skew=0)

 Packet only transmitted on Network A

 Packet only transmitted on Network B

Figure 4-3 Redundant Network Frame Transmission Options

Note: The Skew Value between two redundant frames is defined with a resolution of 1 microsecond. Therefore, if the

following frame pair is scheduled by an Interframe Gap, the resolution of the Interframe Gap timer is decreased from

1 GTU up to 1 microsecond.

1
Port A

Port B
1

2

2 3

N

N
IFG

IFG

PGWT

4

4

5
IFG

PGWT PGWT

Skew Skew Skew

suppressed

Packet

suppressed

Packet

ARINC664 / AFDX Programmer’s Guide 71

c. Enable/Disable individual UDP ports.

Note: Disabling/enabling the UDP port via FdxCmdTxControl, FdxCmdTxVLControl,

FdxCmdTxUDPControl will not reset the error or skewing conditions previously

configured. To disable error injection or skew at an individual UDP port, the user

must issue the FdxCmdTxUDPControl function with parameters set as required.

 Individual UDP Port Status

The function FdxCmdTxUDPGetStatus provides the lowest level UDP port status information

available including:

a. Message Count - Count of messages sent through this UDP port since the

transmitter was started.

 Changing the Source ID of a UDP Port

The function FdxCmdTxUDPChgSrcPort provides the user with the ability to change the

port's source ID while transmitting data. This functionality might be used if the application

included simulation of a server.

ARINC664 / AFDX Programmer’s Guide 72

4.2.3 Generic Transmit Mode

When operating in Generic Transmit Mode, the user is provided with the capability to define

each individual frame and the sequence of the frame to be transmitted by the port. Each frame

defined provides information about the relative timing between the frames, error injection,

payload-generation modes, transmission skew (in redundant operation mode) and/or special

events like a digital output strobe-signal. For high-throughput, special payload-generation

modes can be used, so the hardware takes parts of the frame-data from static send-fields.

Because all frames

must be pre-

buffered on the

hardware, the

number of frames is

limited to the board-

resources.

The functions described in this section should be used after the port has been configured for

Generic Transmit mode using the function FdxCmdTxModeControl, as described in Section

4.2.1.1. Setting up the port when in Generic Transmit mode is basically a two step process with

a function provided for statusing as described in the following sections:

a. Allocating a Transmit Queue

b. Defining the Frames / Writing to the

Transmit Queue

...and once the transmit port is enable via

FdxCmdTxControl as defined in Section

4.2.1.2.....

c. Transmit Queue Status

 Allocating a Transmit Queue

Allocation of the transmit queue involves the function FdxCmdTxQueueCreate. For Generic

Transmit mode, this function basically defines a queue and the size of the queue to be used to

transmit the frames that will be defined by the function FdxCmdTxQueueWrite. The size of

the queue will depend on the number of generic transmit frames required for transmission.

Remember, these frames can be transmitted cyclically or a user-specified number of times as

defined with the Global Transmit function, FdxCmdTxControl (Section 4.2.1.2).

Generic Transmit Setup
(1) Allocate queue for the storage of

the frames to be transmitted.

(2.1) Define the attributes (non-data)

of the generic Tx frame

(2.2) Insert the data into the generic

Tx Frame

(2.3) Write the Frame attributes and

the Frame data to the Tx Queue

ARINC664 / AFDX Programmer’s Guide 73

 Defining the Frames / Writing to the Transmit Queue

The next steps are to define one or more AFDX frames then write the entire list of AFDX

frames to the Transmit Queue using the function FdxCmdTxQueueWrite. Each frame entry

to the queue will include the following:

a. Frame Attributes - define the manner in which the frame should be transmitted

on the network. User-specifiable variables include those listed in Table 4-9.

b. Frame Content - 64 - 1518 bytes of frame data beginning with the MAC Header

and ending with the FCS. MAC Header through the AFDX Payload message is

defined by the user. The frame content required for definition depends upon the

Payload Generation mode (See Table 4-10) selected for the frame attributes.

As you can see, there are many different combinations allowed for the definition of each AFDX

Frame. Multiple AFDX frames can be defined in the Transmit Queue (taking care that the

Transmit Queue size defined in FdxCmdTxQueueCreate can hold all frames defined) using

one FdxCmdTxQueueWrite function call. Additional frames can be added to the Transmit

Queue with additional FdxCmdTxQueueWrite function calls, however, the port transmission

must be disabled. The new entries will always be queued at the end of the transmit queue. To

purge the Transmit Queue of all frames, the port must be reinitialized using the

FdxCmdTxPortInit function.

Frame Content specified by the

user (depending on Payload

Generation mode)

Preamble
Start

Delimiter

MAC

Header

IP

Header

UDP

Header
AFDX Payload

Message

Sequence

Number FCS

7 1 14 20 8 17…1471 1 4bytes

Frame Content

computed by firmware

ARINC664 / AFDX Programmer’s Guide 74

Table 4-9 Frame Attributes for Generic Transmit Frames

Frame Attribute Description

Frame Size Total size of the associated frame in Bytes (including FCS).

(64-1518 bytes)

Payload Generation Mode Defines AFDX frame fields that will be inserted by the MAC-

Hardware from the static Tx data registers (setup using

FdxCmdTxStaticRegsCtrl). See Table 4-10 for Payload

Generation Mode options.

Frame Start Mode Starts transmission of this frame on one of three conditions (See

Figure 4-4):

- when user-specified InterFrame Gap (IFG)* time has

expired

- when user-specified Packet Group Wait Time (PGWT)**

has expired

- on external Trigger Strobe (See Section 4.2.1.3for Strobe

Setup)

*Gap between the end of the preceding frame and the current

frame (resolution of 40ns). Range = 120 ns to approx. 655µsec.

** The time from the transmission start point of the last frame

where the PGWT value is processed to the start point of the

current frame with a resolution of 1us.

External Strobe Enables/Disables output of external Strobe on transmission of

this frame (See Section 4.2.1.3 for Strobe Setup)

Preamble Count Varies the number of preamble Bytes (default 7 bytes)

Physical Error Injection Same Physical Error Injection capabilities as defined for UDP

Port-Oriented Simulation mode as shown in Table 4-8. (CRC

Error, Byte Alignment Error, Preamble Error, Physical Symbol

('HALT') Error)

Sequence Number Control Starting Sequence Number can be defined by the user. The

offset added to the sequence number for each frame can also be

specified.

Redundant Mode Network

Select / Skew

For Redundant mode:

Packet on Network A is delayed by the user-defined Skew*

value, related to Network B

Packet on Network B is delayed by the user-defined Skew*

value, related to Network A

Packet transmitted on both Networks (Skew=0)

Packet only transmitted on Network A

Packet only transmitted on Network B

*Skew can be programmed with a resolution of 1µsec. Range is

0...65535 µsec.

ARINC664 / AFDX Programmer’s Guide 75

Table 4-10 Payload Generation Mode Frame Content Source

Payload

Generation

Mode

Frame Content

From User

From Static Registers

Frame Data
Bytes

(0-n)

No Payload

Generation

User must provide

complete frame
None

IP Partial

MAC/IP/UDP Header

(minus fields provided

by Static Registers)

MAC Destination

MAC Source

MAC Type/Length

IP Version

IP Protocol Field

UDP Checksum

UDP Payload

2-5

3-5

complete

complete

complete

complete

complete

IP Full

MAC Header

(minus fields provided

by Static Registers)

MAC Destination

MAC Source

MAC Type/Length

IP Header

UDP Header

UDP Payload

2-5

3-5

complete

complete

complete

complete

IP Partial +

Timetag

same as IP Partial

same as IP Partial

+

UDP Payload

Timetag

IP Full +

Timetag

same as IP Full

same as IP Full

+

UDP Payload

Timetag

ARINC664 / AFDX Programmer’s Guide 76

Figure 4-4 Packet Group Wait Time & Interframe Gap

Frame-Size 10 Mbps 100 Mbps

19 31.20 µSec 3.12µSec

64 67.20 µSec 6.72 µSec

1518 1230.00 µSec 123.00 µSec

2000 1616.00 µSec 161.60 µSec

x (x + 20)*0.80 µSec (x + 20)*0.08 µSec

Additional Bytes 10 Mbps 100 Mbps

Preamble (7) 5.60 µSec 0.56 µSec

Start Delimiter (1) 0.80 µSec 0.08 µSec

min. Interframe gap (12) 9.60 µSec 0.96 µSec

Frame 1 Frame 2

StartMode = IFG

IFG= T2

PGWT=dont care

Frame 3

StartMode = PGWT

PGWT=T3

IFG=dont care

Frame 5

StartMode=Strobe

PGWT=dont care

IFG=dont care

 IFG

T 2

 PGWT

T 3

Strobe In

Start sending Time

Frame 4

StartMode = PGWT

PGWT=T4

IFG=dont care

PGWT

T4

When you define packet

group wait time and

interframe-gap time you

should pay attention to

these frame-durations.

20 bytes must be

added to the pure

frame-size,

because every

frame begins with

a preamble (7

bytes) and a start-

delimiter (1 byte)

and should have a

minimal

interframe-gap

(12 bytes).

Please note that the minimal

granted packet group wait

time of a frame (i.e Frame 3)

depends on the actual size of

the preceding frame (i.e

Frame 2).

ARINC664 / AFDX Programmer’s Guide 77

The following code creates one Transmit Queue, and, for one AFDX frame, defines the frame

attributes and content and writes the frame into the Transmit Queue. The AFDX Payload

message is initialized to ASCII characters A-Q.
TY_FDX_TX_MODE_CTRL x_TxModeControl;

TY_FDX_TX_QUEUE_SETUP x_TxQueueCreate;

TY_FDX_TX_QUEUE_INFO x_TxQueueInfo;

struct my_Frame_tag {

 TY_FDX_TX_FRAME_HEADER x_Frame;

 AiUInt8 uc_Data[1000];

} My_Frame;

AiUInt8 Dt[100];

printf("\n FdxCmdTxQueueCreate...");

x_TxQueueCreate.ul_QueueSize = 0; //When using size 0, the internal default

 //queue size will be used.

if (FDX_OK!=(FdxCmdTxQueueCreate(ul_Handle,&x_TxQueueCreate,&x_TxQueueInfo)))

{

 printf("FdxCmdTxQueueCreate failed!!!\n");

}

else

{

 printf("FdxCmdTxQueueCreate done.\n");

}

//--- Create Frame for the Tx Queue

My_Frame.x_Frame.uc_FrameType = FDX_TX_FRAME_STD;

My_Frame.x_Frame.x_FrameAttrib.uc_NetSelect = FDX_TX_FRAME_BOTH;

My_Frame.x_Frame.x_FrameAttrib.uc_ExternalStrobe = FDX_DIS;

My_Frame.x_Frame.x_FrameAttrib.uc_FrameStartMode = FDX_TX_FRAME_START_PGWT;

My_Frame.x_Frame.x_FrameAttrib.uc_PayloadBufferMode = FDX_TX_FRAME_PBM_STD;

My_Frame.x_Frame.x_FrameAttrib.uc_PayloadGenerationMode = FDX_TX_FRAME_PGM_USER;

//no payload generation - all frame data defined by the user in this frame

My_Frame.x_Frame.x_FrameAttrib.uc_PreambleCount = FDX_TX_FRAME_PRE_DEF;

My_Frame.x_Frame.x_FrameAttrib.ul_BufferQueueHandle = 0;//used when payload buffer

 //mode is not standard

My_Frame.x_Frame.x_FrameAttrib.ul_InterFrameGap = 25; // 25=1usec;*/

My_Frame.x_Frame.x_FrameAttrib.ul_PacketGroupWaitTime = 1000; // 1000=1msec*/

My_Frame.x_Frame.x_FrameAttrib.ul_PhysErrorInjection = FDX_TX_FRAME_ERR_OFF;

My_Frame.x_Frame.x_FrameAttrib.ul_Skew = 0; // redundant mode only

My_Frame.x_Frame.x_FrameAttrib.uw_FrameSize = 64; //bytes (includes CRC)

My_Frame.x_Frame.x_FrameAttrib.uw_SequenceNumberInit = FDX_TX_FRAME_SEQ_INIT_AUTO;

My_Frame.x_Frame.x_FrameAttrib.uw_SequenceNumberOffset = FDX_TX_FRAME_SEQ_OFFS_AUTO;

/* --- Frame 1 --- VL 60 */

us_FrameCount = 64;

//---MAC Dst= 0x03000000003c (VL 60)

Dt[0]=0x03;Dt[1]=0x00;Dt[2]=0x00;Dt[3]=0x00;Dt[4]=0x00;Dt[5]=0x3c;

//---MAC Src= 0x020000012120

Dt[6]=0x02;Dt[7]=0x00;Dt[8]=0x00;Dt[9]=0x01;Dt[10]=0x21;Dt[11]=0x20;

//---MAC Type/Length

Dt[12]=0x08;Dt[13]=0x00;

//---IP Header (Version/IHL, Type of service, Total length, Fragment ID,

// Time to live, Protocol, Header Checksum)

Dt[14]=0x45;Dt[15]=0x00;Dt[16]=0x00;Dt[17]=0x2d;Dt[18]=0x00;Dt[19]=0x00;

Dt[20]=0x40;Dt[21]=0x00;Dt[22]=0x01;Dt[23]=0x11;Dt[24]=0x6d;Dt[25]=0xa2;

//---IP Source Address 10.001.33.1

Dt[26]=0x0a;Dt[27]=0x01;Dt[28]=0x21;Dt[29]=0x01;

//---IP Destination Address 224.224.0.60 (VL 60)

Dt[30]=0xe0;Dt[31]=0xe0;Dt[32]=0x00;Dt[33]=0x3c;

ARINC664 / AFDX Programmer’s Guide 78

//---UDP Source Port = 24

Dt[34]=0x00;Dt[35]=0x18;

//---UDP Dest Port = 23

Dt[36]=0x00;Dt[37]=0x17;

//---UDP Length = 25

Dt[38]=0x00;Dt[39]=0x19;

//---UDP Checksum

Dt[40]=0x00;Dt[41]=0x00;

//---AFDX Payload

Dt[42]=0x41;Dt[43]=0x42;Dt[44]=0x43;Dt[45]=0x44;Dt[46]=0x45;

Dt[47]=0x46;Dt[48]=0x47;Dt[49]=0x48;Dt[50]=0x49;Dt[51]=0x4a;

Dt[52]=0x4b;Dt[53]=0x4c;Dt[54]=0x4d;Dt[55]=0x4e;Dt[56]=0x4f;

Dt[57]=0x50;Dt[58]=0x51;

for (i = 0 ; i< 59; i++)

 My_Frame.uc_Data[i] = (unsigned char) Dt[i];

if (FDX_OK!=(FdxCmdTxQueueWrite(ul_Handle,FDX_TX_FRAME_HEADER_GENERIC

 ,1,sizeof(My_Frame),&My_Frame)))

{

 printf("FdxCmdTxQueueWrite failed!!!\n");

}

else

{

 printf("FdxCmdTxQueueWrite done.\n");

}

 Generic Transmit Queue Status

One status function is provided, FdxCmdTxQueueStatus, which will indicate the following

while in Generic Transmit mode:

a. Run Status - indicates that frames have been written to the queue and the

transmitter is up and running.

b. Frames Sent - the number of frames transmitted

c. Frames in the Transmit Queue - the number of frames written to the queue.

ARINC664 / AFDX Programmer’s Guide 79

4.2.4 Replay Transmit Mode

When operating in Replay Transmit Mode, the user is provided with the capability to replay

previously recorded data or playback data being captured real-time while in Chronologic

Receive mode. (See Section 4.3for instructions on how to setup for Record Capture mode.)

Replay mode does not reproduce any physical error conditions detected when the data was

recorded, but protocol errors as well as size violations are replayable as listed in Table 4-11. A

packet will be discarded by the firmware if any of the Non-replayable error conditions are

detected in the replay data.

Table 4-11 Errors Replayable/Not Replayable

 Error Definition Symbol

N
o

n
-

R
e
p
la

y
a
b

le
*

Wrong physical Symbol during frame reception. PHY

Wrong Preamble/Start Frame Delimiter received. PRE

Unaligned Frame length received TRI

MAC CRC Error. CRC

Short Interframe Gap Error (<960ns) IFG

Frame without valid Start Frame Delimiter received SFD

 R
e
p
la

y
a
b

le

AFDX IP Framing Error (AFDX-IP frame specific settings violated). IPE

AFDX MAC Framing Error (AFDX-MAC frame specific settings violated). MAE

Long Frame Received (> 1518 Bytes up to 2000 bytes) LNG

Short Frame Received (40 to < 64 Bytes) SHR

VL specific Frame size Violation VLS

Sequence No. Mismatch SNE

Traffic Shaping Violation TRS

*Note: The packet will be discarded by the firmware if any of the Non-replayable error
conditions are detected in the replay data

The functions described in this section should be used after the port has been configured for

Replay Transmit mode using the function FdxCmdTxModeControl, as described in Section

4.2.1.1. Setting up the port for Replay Transmit mode is basically a two step process with a

function provided for statusing as described in the following sections:

a. Allocating a Transmit Queue

b. Writing the Replay data to the Transmit

Queue

c. Transmit Queue Status

 Allocating a Transmit Queue

Allocation of the transmit queue involves the function FdxCmdTxQueueCreate. For Generic

Replay mode, this function basically defines a reloadable queue and the size of the queue. The

size of the queue will depend on:

Replay Transmit Setup
(1) Allocate queue for the storage of

the frames to be transmitted.

 (2) Write the Replay file address to

the Tx Queue

ARINC664 / AFDX Programmer’s Guide 80

a. the Replay file size, when transmitting a pre-recorded file. Remember, this

replay file can be setup to be transmitted at a specific start time, on an external

strobe input or immediately as defined with the Global Transmit function,

FdxCmdTxControl (Section 4.2.1.2).

b. the amount of data read from the Monitor Queue to be written to the Transmit

Queue, for play-back of real-time data being captured.

 Writing a Replay File to the Transmit Queue

The next step is to write the replay data entries to the Transmit Queue. If writing a replay file,

the address and size of the replay file will be indicated, using the function

FdxCmdTxQueueWrite. If writing real-time data from the Monitor Queue, the address and

size of the Monitor Queue entries will be indicated. The Transmit Queue can be reloaded with

Replay entries by issuing additional FdxCmdTxQueueWrite function calls, even while the

port is enabled and transmitting data. The new Replay file entries will always be queued at the

end of the transmit queue.

 Replay Transmit Queue Status

One status function is provided, FdxCmdTxQueueStatus, which will indicate the following

while in Replay Transmit mode:

a. Empty Transmit Queue - indicates transmit queue is created, but no Replay

frame entries have been entered.

b. Partially Full Transmit Queue - the transmit queue is partially filled with

Replay frame entries.

c. Full Transmit Queue - the transmit queue is full.

d. All Frames Sent - All replay frame entries sent to the transmit queue have been

sent.

e. Run Status - indicates that frames have been written to the queue and the

transmitter is up and running.

f. Frames Sent - the number of frames transmitted

ARINC664 / AFDX Programmer’s Guide 81

4.3 Receiver Programming

The AFDX receive port can be configured in one of two receive modes as listed below:

a. VL-Oriented Receive Operation - In this receive mode the UDP Port can

receive and store messages for either "connection" oriented (AFDX Comm Ports)

or "connectionless" oriented (SAP) ports. The Receive AFDX Comm ports are

characterized by the address-quintuplet, (VL, Src.-IP, Dst.-IP, Src.-UDP, Dst.-

UDP), each with its own message storage area. For an AFDX Comm port in this

mode, the user must specify the exact address quintuplet in order for the VL

frames to be captured. SAP receive ports, however, may receive AFDX messages

from multiple sources. Therefore, the user only specifies the VL and UDP/IP

destination address in order for the VL frames to be captured. The source of the

AFDX frame is only determined after the message has been received. Trigger

capability is not provided in this receive mode.

b. Chronological Receive Operation (Monitor Mode) - In this receive mode all

VL data streams are captured and the captured frames are stored in a single

memory buffer. The user can specify additional VL filters/checking to be

performed if desired. This mode provides for recording/saving the captured data

for replay. The following four capture modes define what data is captured and

when data capture begins:

 SingleShot-Standard

In this mode, each port uses a pre-defined onboard-memory area

(singleshot-memory) for capturing frames. After this memory is filled

with frames, no more frames will be stored. The size of singleshot-

memory depends on your board type and RAM size. Trigger Control

Blocks (TCBs) can be used in this mode to define the trigger condition

that will start data capture (default capture start is when a frame is

received) and how much "pre-trigger data" is to be stored in the monitor

buffer.

 SingleShot-Selective
This mode is very similar to SingleShot-Standard mode, but Trigger-

Control-Blocks are used for filtering, i.e. what data will be captured.

Before a frame is saved in the SingleShot-memory, it will be evaluated

using the active TCB. Only those frames which meet the TCB condition

will be saved.

 Continuous

In this mode, the SingleShot-memory is used as a ring-buffer. As soon

as the memory is full, old frames will be overwritten with new frames

(wrap-around). Trigger Control Blocks can be used in this mode to

define the trigger condition that will start data capture (default capture

start is when a frame is received).

ARINC664 / AFDX Programmer’s Guide 82

 Record

In this mode, the monitor buffer is organized in the same way as in

Continuous mode. However, the frames will be written directly to a

user-specified file or directly to an output port configured for replay.

Trigger Control Blocks can be used in this mode to define the trigger

condition that will start data capture (default capture start is when a frame

is received).

Table 3-2 defines the key features and differences between the Chronologic and VL-Oriented

receive modes.

If your application requires the reception and processing of AFDX traffic, this section will

provide you with the understanding of the receiver programming functions required for use

within your application. Regardless of the receive mode you select, global receiver functions

must be called first. This section describes receiver functions as following:

a. Global Receiver Functions

 Port Initialization & Rx Mode Setup

 Reception Control

 Strobe Input/Output Usage (optional)

 Global Receiver Status

b. VL-Oriented Receive Operation

 Defining the VL and UDP Port to be Monitored/Captured

 Reading messages from the UDP Port

 Individual UDP Port Status

c. Chronological Receive Operation (Monitor Mode)

 Defining the Capture mode

 Allocating the Monitor Queue

 Additional VL Filter Capability

 Creating Trigger Conditions

 Reading the Captured Data.

ARINC664 / AFDX Programmer’s Guide 83

4.3.1 Global Receiver Functions

Global receiver functions are the functions that apply to all modes of operation (VL-Oriented

and Chronological modes). The major functions of the global receiver include:

a. Port Initialization & Rx Mode Setup

b. Reception Control

c. Strobe Input/Output Usage (optional)

d. Global Receiver Status.

The following sections describe the above global receiver functions.

 Port Initialization and Rx Mode Setup

After board setup (see section 4.1.1) is complete, an individual receive port can be initialized

and the mode can be configured for either VL-Oriented

or Chronological receive mode using the functions

listed below. Once the mode has been configured the

user can then program the receive processes as defined

in the corresponding sections of this document

(Section 4.3.1.1 - 4.3.1.2).

a. FdxCmdRxPortInit - will perform initialization and reset of the receive port’s

global characteristics. This function always needs to be called first. The user

must assign a portmap ID to each Rx port. This portmap ID is a virtual ID

assigned to the physical port and will be contained in the data read from the

monitor queue (FdxCmdMonQueueRead). The portmap ID allows the user to

identify the physical port on which the data wass received. This is especially

important for applications using multiple AFDX cards or using receive ports in

redundant mode. After a successful call to FdxCmdRxPortInit the state of the

port will be:

 Global Statistics Available - the global receiver status, output from the

FdxCmdRxGlobalStatistics function call, are available. (See Section

4.3.1.4 for further information)

 All VL statistics enabled – statistic collections on VLs is enabled (even

if previously disabled thorugh the function FdxCmdRxVLControl).

 Chronological Receive Mode - this is the default mode of operation for a

receive port. By default, it is not necessary to create VLs for data

capturing.

4

Port Rx Setup
(1) Assign Portmap ID to each Rx port

(2) Define receiver mode (VL-Oriented

or Chronological Receive)

ARINC664 / AFDX Programmer’s Guide 84

 No Trigger Control Blocks (TCBs) - no TCBs are enabled. (Trigger

Control Blocks define conditions that will trigger the start of data

capture.)

Note: In Chronological Mode it is not necessary to specify a TCB in

order to capture all incoming frames starting with the first frame

received on the port.

b. FdxCmdRxModeControl - provides configuration for the following modes:

 Receive mode – Select the mode using to receive data, two modes are

available:

1. VL-Oriented Receive Operation - In this receive mode each port

is characterized by either the address-quintuplet (VL, Src.-IP,

Dst.-IP, Src.-UDP, Dst.-UDP) for AFDX Comm ports, or only the

VL, Dst.-IP, and Dst.-UDP for SAP ports. Each UDP port has its

own message-memory area. Trigger capability is not provided in

this receive mode.

2. Chronological Receive Operation - In this receive mode all

captured frames are stored in a single memory buffer. All VL data

streams will be captured and the user can specify additional VL

filters/checking to be performed if desired. Chronological monitor

mode provides for recording/saving the captured data for replay.

 Default Payload mode - the payload mode defines the amount of data

from the AFDX frame that will be stored in the receive buffers when in

Chronological Monitor mode. (The entire AFDX payload data message is

stored when in VL-Oriented Receive mode). Regardless of the payload

mode chosen the frame statistics will always be computed.

 Default Chronological mode - the default Chronological mode defines

what data is captured when in Chronological Monitor mode (When in

VL-Oriented Receive Mode only statistics are computed. The user must

specify which VL's are to be captured).

The following code example uses API software library constants and structures to initialize one

port using a portmap equal to 2 and configures the mode to Chronological Monitor mode. The

default setup for payload mode is to capture the full AFDX frame and the default chronological

mode captures and provides statistics for all VLs.

TY_FDX_PORT_INIT_IN x_PortInitIn;

TY_FDX_PORT_INIT_OUT x_PortInitOut;

TY_FDX_RX_MODE_CTRL_IN x_ModeCtrlIn;

TY_FDX_RX_MODE_CTRL_OUT x_ModeCtrlOut;

//--- Initialization

x_PortInitIn.ul_PortMap = 2;

ARINC664 / AFDX Programmer’s Guide 85

if (FDX_ERR == FdxCmdRxPortInit(ul_Handle, &x_PortInitIn, &x_PortInitOut))

{

 printf("Port Reset failure!!!\n");

}

else

{

 printf("Port Receiver Initialized\n");

}

//--- mode control -> select Chrono Mode

x_ModeCtrlIn.ul_ReceiveMode = FDX_RX_CHRONO;

x_ModeCtrlIn.ul_DefaultPayloadMode = FDX_PAYLOAD_FULL;

x_ModeCtrlIn.ul_DefaultCronoMode = FDX_RX_DEFAULT_MON_ENA_ALL;

x_ModeCtrlIn.ul_GlbMonBufferSize = 0; // if zero, a default value will be used

if (FDX_OK != (FdxCmdRxModeControl(ul_Handle, &x_ModeCtrlIn, &x_ModeCtrlOut)))

{

 printf("Port 2 Mode Control Failure!!!\n");

}

else

{

 printf("Port Set to Chrono Monitor Receive Mode\n");

 printf("Port Global Mon Buffer Size: %d bytes\n",

 x_ModeCtrlOut.ul_GlbMonBufferSize);

}

 Reception Control

After all filters and frame validation methods of the port have been programmed (as defined in

Section 4.3.2 - 4.3.3), the method used to start/stop reception of the data should be defined.

There is one global function providing Rx Control:

a. FdxCmdRxControl - starts/stops reception for a physical port and resets

counters including:

 Starting/Stopping the receiver - provides for

1. Starting/stopping the receiver on command

 Global Statistics Reset - defines which global counters to reset

including:

1. Reset nothing

2. Reset all

3. Reset only error related counters.

The following code configures port 2 to receive AFDX frames and resets all receive counters for

this port upon this command.

TY_FDX_RX_CTRL x_RxControl;

x_RxControl.ul_StartMode = FDX_START;

x_RxControl.ul_GlobalStatisticReset = FDX_RX_GS_RES_ALL_CNT;

if (FDX_OK != (FdxCmdRxControl(ul_Handle, &x_RxControl)))

ARINC664 / AFDX Programmer’s Guide 86

{

 printf("Failure to start Receiver!!!\n");

}

else

{

 printf("Receiver Started\n");

}

 Trigger Input/Output Usage

As a programming option the trigger input/output signals for the ports can be used in various

ways to control triggers to start data capture and/or to indicate the occurrence of a specific frame

condition or capture status as shown in Table 4-7. This table indicates the functions needed for

the trigger signals and in which receive modes these functions are applicable.

Please refer also to the hardware manual associated with the board type for information on how

to connect external devices to the trigger input/output signals of your AIM ARINC664 device.

Table 4-12 Trigger Input/Output receiver functions

Function

Type

Applicable

mode

API Function
Strobe-In

Capability

Strobe-Out

Capability

V
L

-O
ri

en
te

d

C
h

ro
n

o
lo

g
ic

a
l

M
o
n

it
o
r

Global Receiver X X FdxCmdRxTrgLineControl

Defines the strobe Input/Output lines to be

used for the receive port

Global Receiver X X FdxCmdRxVLControlEx

 Strobe out on frame

reception for a

specific VL*

Global Receiver X X FdxCmdRxVLControlEx

 Strobe-out on

erroneous frame

reception for a

specific VL*

Chronological

Monitor
 X FdxCmdMonCaptureControl Strobe-out on

Capture stop

or

Strobe out on Half

Monitor Buffer Full*

Chronological

Monitor
 X FdxCmdMonCaptureControl Strobe-out on

Capture start/re-start*

Chronological

Monitor
 X FdxCmdMonTCBSetup Use Strobe-in to enable

Trigger

* The trigger output strobe is asserted after a trigger condition has been detected by the BIU

processor. Thus, the frame which caused the trigger has to be completely received and

processed by the BIU Processor before the strobe is asserted. Therefore, the strobe will

appear with a delay on the trigger output, relative to the packet on the network. The delay

time is dependent on the current network traffic.

ARINC664 / AFDX Programmer’s Guide 87

ARINC664 / AFDX Programmer’s Guide 88

 Global Receiver Status

The Global Receiver function group includes three receiver status function calls,

FdxCmdRxStatus, FdxCmdRxGlobalStatistics and

FdxCmdRxVLGetActivity, as shown in Table 4-13. Additional

lower level status can be obtained when in VL-Oriented Receive

mode by using the function FdxCmdRxUDPGetStatus, and,

when in the Chronological Receive mode, by using

FdxCmdMonGetStatus as described in Section 4.3.2 and 4.3.3

respectively.

Table 4-13 Global Receiver Status

API Function Status Description

FdxCmdRxStatus Receiver Status Port is Stopped/Running/Error

FdxCmdRxGlobalStatistics

(composite status for all

VLs)

Total Byte Count
Count of total Bytes received since start of

the last counter reset

 Error Free frames
Count of error free frames since start or the

last counter reset

 Erroneous Frames
Count of erroneous frames since start or

the last counter reset

 Bytes per second Bytes received per second

 Frames per second Frames received per second

 Physical errors (PHY)
Count of frames with wrong physical

Symbol during frame reception

 Preamble Errors (PRE)
Count of frames with wrong

Preamble/Start Frame Delimiter received

 Unaligned Frame length (TRI) Count of unaligned Frame length received

 MAC CRC Errors (CRC) Count of MAC CRC Error

 IFG Errors (IFG) Count of short IFG Error (<960ns)

 IP Header Errors (IPE) Count of IP static header field errors

 MAC Header Errors (MAE) Count of MAC static header field errors

 Start Frame Delimiter Errors (SFD)
Count of frames received without valid

Start Frame Delimiter

 Frame Length Errors (VLS) Count of VL specific Frame size Violation

 Sequence Number Errors (SNE) Count of Sequence Number integrity errors

 Traffic Shaping Errors (TRS) Count of Traffic Shaping Violation

Frames with size = 1-63 bytes

(SHR)

 Frames w/size = 64-127 bytes

 Frames w/size = 128-255 bytes

 Frames w/size = 256-511 bytes

 Frames w/size = 512-1023 bytes

 Frames w/size = 1024-1518 bytes

 Frames w/size = >1518 bytes (LNG)

FdxCmdRxVLGetActivity

(all active or specific VLs)
Enable Mode

Enable mode configured with

FdxCmdRxVLControl

 Payload Mode
Payload mode configured with

FdxCmdRxVLControl

7

Retrieve Status
(1) Tx Status

(2) Rx Status

(3) Retrieve Captured data

ARINC664 / AFDX Programmer’s Guide 89

 Verification Mode
Verification mode configured with

FdxCmdRxVLControl

List of Error types detected:

PHY, PRE, TRI, CRC, IFG, IPE,

MAE, SFD, LNG, SHR, VLS, SNE

(Errors defined above for

FdxCmdRxGlobalStatistics)

 VL valid frame count

 VL erroneous frame count

 Frames per second Frames received per second

 Redundant Frames Count of redundant frames discarded

4.3.2 VL-Oriented Receive Mode

In this Receive Mode the UDP Port

can receive and store messages for

either "connection" oriented (AFDX

Comm Ports) or "connectionless"

oriented (SAP) ports. The Receive

AFDX Comm ports are characterized

by the address-quintuplet, (VL, Src.-

IP, Dst.-IP, Src.-UDP, Dst.-UDP), each with its own message storage area. For an AFDX

Comm port in this mode, the user must specify the exact address quintuplet in order for the VL

frames to be captured. SAP receive ports, however, may receive AFDX messages from

multiple sources. Therefore, the user only specifies the VL and UDP/IP destination adress in

order for the VL frames to be captured. The source of the AFDX frame is only determined after

the message has been received. When operating in VL-Oriented Receive mode the AFDX UDP

ports can perform redundancy management, integrity checking and traffic shaping.

The functions described in this section should be used after the port has been configured for VL-

Oriented Simulation using the function FdxCmdRxModeControl, as described in Section

4.3.1.1. Setting up the port when in VL-Oriented Receive mode consists of the following main

functions:

a. Defining Virtual Link and UDP port to be

monitored/captured

...and once the Receive port is enabled via

FdxCmdRxControl as defined in Section

4.3.1.2

b. Reading messages from the UDP Port

c. Individual UDP Port Status

 Defining the Virtual Link and UDP Port to be Monitored/Captured

The following two functions are associated with definition of the VL and UDP Port streams to

be monitored/captured for a defined port.

VL-Oriented Setup
(1) Define VL characteristics to look

for (VL ID and range) and type of

verification required

(2) Setup Rx UDP port (AFDX Comm

port or SAP port...)

UDP Layer UDP Layer

Application(s)Application(s)

AFDX

Comm

Port

Q SQ Q S Q S
SAP

Port

UDP Layer UDP Layer

Application(s)Application(s)

AFDX

Comm

Port

Q SQ Q S Q S
SAP

Port

ARINC664 / AFDX Programmer’s Guide 90

FdxCmdRxVLControl - enables (or disables) an individual VL to be

monitored/captured. Remember, when in VL-Oriented Receive mode, all VL's

are initially disabled (with the FdxCmdRxPortInit function), therefore, this

function is required if any VL is to be monitored/captured. The VL(s) must be

setup for extended operation and configured for the following receive processing

options:

 Verification mode - allows the user to define the type of verification to

be performed on the VL as shown in Table 4-14. Each verification mode

requires that parameters be set to establish the range of acceptable receive

frame behavior as shown in Table 4-15 and including:

1. BAG values are in milliseconds and include 1, 2, 4, 8, 16, 32, 64,

128 msecs. Jitter range is 1 to 65535 microseconds.

2. Max/Min Frame Length includes all fields shown below (except

the Preamble and Start Delimiter):

3. Max Skew - the maximum time difference between the arrival

time of the redundant frame with the same sequence number.

Values are in microseconds with a range of 0 to 65535µsec.

 Extended Filter - allows the user to specify that the VL frames meet an

additional filter before being captured. This generic filter compares up

to 4 bytes of the AFDX frame with a user specified value. The user

has the option to store the frame if the values match/don't match.

b. FdxCmdRxVLControlEx - (optional) extended VL function to configure output

of a strobe signal or interrupt upon VL frame reception or frame reception error

or interrupt on VL Buffer Full/Half Full/Quarter Full.

Preamble
Start

Delimiter

MAC

Header

IP

Header

UDP

Header AFDX Payload FCS

7 1 12 22 17…1471 48

AFDX

Sequence

Number

1

Preamble
Start

Delimiter

MAC

Header

IP

Header

UDP

Header AFDX Payload FCS

7 1 12 22 17…1471 48

AFDX

Sequence

Number

1

Frame-Size

Message

F3
F1 F2

BAG BAG

Maximum Jitter

Window

Jitter = 0 0 < Jitter < Max Jitter = Max

F3
F1 F2

BAG BAG

Maximum Jitter

Window

F3
F1 F2

BAG BAG

Maximum Jitter

Window

Jitter = 0 0 < Jitter < Max Jitter = Max

ARINC664 / AFDX Programmer’s Guide 91

Table 4-14 Verification Mode Options and Required Parameters (for VL-Oriented Rx Mode)

Verification Mode Description Default
Setting

Parameters
Required

re
d
u
n

d
a
n
t

m
o

d
e

s
in

g
le

 m
o
d
e

B
A

G

M
ax

 J
it

te
r

M
ax

 F
ra

m
e

L
en

g
th

M
in

 F
ra

m
e

L
en

g
th

M
ax

 S
k

ew

Redundancy
Management

Enable Redundancy Management
as described in AFDX End System
Detailed Functional Specification.
The discard counter is incremented
if the current received frame is
discarded by the RM facility for
either Port A or Port B.

Traffic shaping
Verification

Enable Traffic Shaping Verification
like described in AFDX Switch
Detailed Functional Specification. If
during the previous frame check, an
error occurs (except if Sequence
number error or Invalid Packet
Processing is enabled), the frame is
not fed to the TS facility.

VL specific Frame size
Check

Maximum frame size for the given
VL is checked.

Sequence Number
Integrity check

Sequence numbering of the
incoming frames are checked

Invalid Packet
processing

All Packets, also the erroneous, will
be passed through to the buffer

ARINC664 / AFDX Programmer’s Guide 92

c. There are two sets of functions associated with creation of the UDP Rx port:

AFDX Comm port functions and SAP functions as described below:

 For AFDX Comm Port (Sampling or Queuing Connection-oriented port):

 FdxCmdRxUDPCreatePort - this function will define the characteristics

associated with a UDP Sampling/Queuing port associated with a VL as

listed in the example below (showing four UDP ports). A UDP Handle

to the UDP Port is returned when this command is issued successfully.

The handle is used for all further communication/control of the UDP Port.

An AFDX Comm port is connection-oriented, therefore, the entire

address quintuplet is specified for the create port function to define the

point-to-point connection.

Maximum Message Size - the size of the AFDX Payload Message. The

size is fixed for Sampling ports. For queuing ports, it is the

maximum size of the complete message to be reassembled and

received at the queuing port.

Number of Messages - for a Sampling Port this is always 1. For a

Queuing Port, this indicates the number of AFDX complete

(reassembled) messages (with size = to max Message size) to be

buffered when received. The default value is 2.

The following code enables one VL (VL 60) one UDP Sampling port (1) for

monitoring/capturing. Verification Mode is disabled, therefore, there will be no Traffic Shaping

performed on the received data frames for that VL. The whole AFDX frame will be stored in

the VL buffer.

 //--- VL control (per VL which we want to watch)

 x_VLControl.ul_VLId = DEF_VL;

 x_VLControl.ul_VLRange = 1;

 x_VLControl.ul_EnableMode = FDX_RX_VL_ENA_EXT; //required value for VL-Oriented

 x_VLControl.ul_PayloadMode = FDX_PAYLOAD_FULL;

 x_VLControl.ul_TCBIndex = 0;

 x_VLDesc.ul_VerificationMode = FDX_RX_VL_CHECK_DISA;

 x_VLDesc.ul_VLBufSize = 0x8000;

VL ID

Type

(Sampling

or

Queuing) Source IP Destination IP

Source

UDP

Destination

UDP

Maximum

Message Size

Number of

buffered

messages

60 Sampling 10.1.33.1 224.224.0.0 1 1 100 bytes 1

60 Sampling 10.1.33.1 224.224.0.0 2 2 90 bytes 1

60 Sampling 10.1.33.1 224.224.0.0 3 3 80 bytes 1

60 Queuing 10.1.33.1 224.224.0.0 4 4 max. 8000 bytes 3

FdxCmdRxUDPCreatePort

ARINC664 / AFDX Programmer’s Guide 93

 if (FDX_OK != (FdxCmdRxVLControl(ul_Handle, &x_VLControl, &x_VLDesc)))

 {

 printf("Receive VL Control Failure!!!\n");

 }

 else

 {

 printf("VL:%d Enabled for Capturing on Port\n", DEF_VL);

 }

//--- create udp-port for read

x_UdpDesc.ul_PortType = FDX_UDP_SAMPLING;

x_UdpDesc.x_Quint.ul_IpDst = DEF_DST_IP;

x_UdpDesc.x_Quint.ul_IpSrc = DEF_SRC_IP;

x_UdpDesc.x_Quint.ul_UdpDst = DEF_DST_UDP1;

x_UdpDesc.x_Quint.ul_UdpSrc = DEF_SRC_UDP1;

x_UdpDesc.x_Quint.ul_VlId = DEF_VL;

x_UdpDesc.ul_UdpNumBufMessages= 1;

x_UdpDesc.ul_UdpMaxMessageSize= DEF_UDP_MAXMSG;

if (FDX_OK != FdxCmdRxUDPCreatePort(ul_Handle, &x_UdpDesc, &g_pUdp1Port2Handle))

{

 printf("Receive UDP Port Creation Failure!!!n");

}

else

{

 printf("Rx UDP Port Created on Port -- VL:%d UDP Port:%d\n",DEF_VL,DEF_DST_UDP1);

}

For SAP Port (Connectionless-oriented port):

 FdxCmdRxSAPCreatePort - this function will define the characteristics

associated with the SAP port. A UDP Handle to this UDP SAP Port is

returned when this command is issued successfully. The handle is used

for all further communication/control of the UDP Port. The

characteristics for the SAP Tx port include only those listed below.

Remember, for a SAP port - since the port is "connectionless" it can

receive from multiple E/S's and the source is determined at the time of

reception, therefore, only the Destination IP/UDP addresses are required.

VL ID Destination IP

Destination

UDP

Maximum Message

Size

Number of

buffered

messages

60 224.224.0.0 1 max. 8000 bytes 1

60 224.224.0.0 2 max. 8000 bytes 1

60 224.224.0.0 3 max. 8000 bytes 1

60 224.224.0.0 4 max. 8000 bytes 3

FdxCmdRxSAPCreatePort

ARINC664 / AFDX Programmer’s Guide 94

Maximum Message Size - the size of the AFDX Payload Message. For

SAP ports, it is the maximum size of the complete message to be

reassembled and received at the port.

Number of Buffered Messages - For a SAP Port, this indicates the

number of complete reassembled messages (with size = to max

Message size) that may be buffered. The default value is 2.

ARINC664 / AFDX Programmer’s Guide 95

 Reading Messages from the Port

Now that the MAC Header, IP Header and UDP Header have been defined for the UDP port as

described above, the Receive port can be started using the Global Receive function call,

FdxCmdRxControl as defined in Section 4.3.1.2. The user may then want to read the AFDX

Payload Message received at the port.

There are two sets of functions for reading messages received by the port - one for AFDX

Comm ports and one for SAP ports as defined in the following two sections.

 Reading Messages from the AFDX Comm Port

For AFDX Comm ports, reading AFDX Payload messages received by the port is accomplished

using the FdxCmdRxUDPRead or FdxCmdRxUDPBlockRead functions. These functions

should be performed after FdxCmdRxCreatePort has been executed and a UDP Port handle

obtained from that function. The size of the data read from the port cannot exceed the

Maximum Message Size defined when creating the UDP port using

FdxCmdRxUDPCreatePort. FdxCmdRxUDPBlockRead performs in the same manner as

FdxCmdRxUDPRead, however, it allows the user to read to from multiple ports with one

function call.

The format of the Payload message received from the port is shown in Figure Figure 4-5.

Preamble
Start

Delimiter

MAC

Header

IP

Header

UDP

Header
AFDX Payload

Message

Sequence

Number FCS

7 1 14 20 8 17…1471 1 4bytes

ARINC664 / AFDX Programmer’s Guide 96

Figure 4-5 AFDX Comm Port Message Buffer Layout

 AFDX Comm Port Message Buffer Layout

 31 24 23 16 15 8 7 0

B
u
ff

e
r

H
e
a
d

e
r

 Time Tag High

Time Tag Low

Message Size

Reserved

A
F

D
X

 P
a
y
lo

a
d

M
e
s
s
a
g
e

Received UDP Message

sampling message: up to UDP payload (1 – 1471 bytes)
queuing message: up to 8Kbytes)

Programming considerations are listed below for each type of AFDX Comm UDP port:

a. Sampling Port

 If the message received at the port is larger than the Maximum Message

Size defined with FdxCmdRxCreatePort, the extra bytes will be

discarded.

 FdxCmdRxUDPRead or FdxCmdRxUDPBlockRead should be

performed at the sampling rate expected at the receive port for that UDP.

The UDP Buffer used to store a received Sampling port's AFDX message

is overwritten when the subsequent AFDX frame is received. (Number

of messages read returned by the function call will be 0 or 1.)

b. Queuing Port

 The reception of the entire message may require the reception of multiple

AFDX frames (reassembly will be by IP layer).

 More than one message can be read from the queuing port using the

FdxCmdRxUDPBlockRead function.

 Queuing messages are received asynchronously, therefore, the UDP

Queuing port should be polled at a rate appropriate for expected Queuing

messages. If a message has not been received or is in the process of being

received by the UDP port, FdxCmdRxUDPRead /

One entry will contain one complete sampling or queuing
message and a Buffer Header containing the time tag of
the last received message. (For queuing ports, where
the messages can be fragmented, it is the time tag of the
last received fragment.)

ARINC664 / AFDX Programmer’s Guide 97

FdxCmdRxUDPBlockRead will return a zero for Number of messages

actually read.

The following code checks the status of a UDP port, and if the number of messages received is

greater than 0, the UDP message is read and printed.
/* Read Udp Port Status */

if (FDX_OK != (r_RetVal = FdxCmdRxUDPGetStatus (ul_HandlePort, aul_UDPHandles[k],

 &x_UdpRxStatus)))

 printf("\r\n\n FdxCmdRxUDPGetStatus() failed.");

else

{

 printf("\r\n\n FdxCmdRxUDPGetStatus() UDP-HandleNo:%d MsgCount:%10ld

 MsgErrorCount:%10ld ",k, x_UdpRxStatus.ul_MsgCount,

 x_UdpRxStatus.ul_MsgErrorCount);

 /* Read Udp Port Data */

 if (0 < x_UdpRxStatus.ul_MsgCount)

 {

 if (FDX_OK != (r_RetVal = FdxCmdRxUDPRead (ul_HandlePort, aul_UDPHandles[k],

 3, &ul_MsgRead, auc_Data)))

 printf("\r\n FdxCmdRxUDPRead() failed.");

 else

 {

 if (ul_MsgRead > 0)

 {

 TY_FDX_UDP_HEADER *px_UDPHeader;

 /* Get pointer to first Header (start of Array) */

 px_UDPHeader = (TY_FDX_UDP_HEADER*) auc_Data;

 for (j=0; j<ul_MsgRead; j++)

 {

 TY_FDX_IRIG_TIME x_IrigTime;

 /* Get IRIG Time */

 FdxFwIrig2StructIrig(&px_UDPHeader->x_FwIrigTime, &x_IrigTime);

 /* print size and Time information */

 printf("\r\n FdxCmdRxUDPRead() MsgRead:%10ld MsgSize = %08lx IRIG Day:%ld

 Time:%02ld:%02ld:%02ld:%03ld:%03ld",

 ul_MsgRead, px_UDPHeader->ul_MsgSize,

 x_IrigTime.ul_Day, x_IrigTime.ul_Hour, x_IrigTime.ul_Min,

 x_IrigTime.ul_Second, x_IrigTime.ul_MilliSec, x_IrigTime.ul_MicroSec);

 /* print Buffer Data */

 pData = (AiUInt8 *)px_UDPHeader;

 for (i=0; i < px_UDPHeader->ul_MsgSize; i++)

 {

 if (0 == (i%16))

 printf("\r\n Data %04lx: %02x", i, pData[i+16]);

 else

 printf(" %02x", pData[i+16]);

 }

 /* Get pointer to next message */

 px_UDPHeader = (TY_FDX_UDP_HEADER*) (((AiUInt32)(px_UDPHeader)) +

 px_UDPHeader->ul_MsgSize + sizeof(TY_FDX_UDP_HEADER));

 }

 }

 else

ARINC664 / AFDX Programmer’s Guide 98

 printf("\r\n FdxCmdRxUDPRead() MsgRead:%10ld ", ul_MsgRead);

 }

 }

}

 Reading Messages from the SAP Port

For SAP ports, reading AFDX Payload messages received by the port is accomplished using the

FdxCmdRxSAPRead or FdxCmdRxSAPBlockRead functions. These functions should be

performed after FdxCmdRxSAPCreatePort has been executed and a UDP Port handle

obtained from that function. The size of the data read from the port cannot exceed the

Maximum Message Size defined when creating the UDP port using

FdxCmdRxSAPCreatePort. FdxCmdRxSAPBlockRead performs in the same manner as

FdxCmdRxSAPRead, however, it allows the user to read to from multiple ports with one

function call.

The format of the Payload message received from the port is shown in Figure 4-6. Notice the

difference between the data received at a SAP port and the data received at the AFDX Comm

Port is that the SAP port identifies the source (IP/UDP source) of the AFDX message. This is

performed since the port is "connectionless" i.e. the destination of the message is not determined

until time of transmission, therefore, a destination port could receive messages from multiple

source ports.

Figure 4-6 SAP Port Message Buffer Layout

 SAP Port Message Buffer Layout

 31 24 23 16 15 8 7 0

B
u
ff

e
r

H
e
a

d
e
r

 Time Tag High

Time Tag Low

Message Size

IP Source Address

UDP Source Port

Reserved

A
F

D
X

 P
a
y
lo

a
d

D
a
ta

Received UDP Message

message size: up to 8Kbytes

One entry will contain one complete re-assembled
message and a Buffer Header containing the source and
the time tag of the last received message/fragment.

ARINC664 / AFDX Programmer’s Guide 99

Programming considerations are listed below for the SAP port:

a. The reception of the entire message may require the reception of multiple AFDX

frames (reassembly will be by IP layer).

b. More than one message can be read from the port using the

FdxCmdRxSAPBlockRead function.

c. Messages are received asynchronously, therefore, the SAP port should be polled

at a rate appropriate for expected messages. If a message has not been received

or is in the process of being received by the UDP port, FdxCmdRxSAPRead /

FdxCmdRxSAPBlockRead will return a zero for Number of messages actually

read.

 Individual UDP Port Status

The function FdxCmdRxUDPGetStatus provides the lowest level UDP port status information

available including:

a. Message Count - Count of messages written to this UDP port since the receiver

was started.

b. Error Count - Count of erroneous message written to the UDP port buffer since

the receiver was started.

ARINC664 / AFDX Programmer’s Guide 100

4.3.3 Chronological Monitor Receive Mode

In this Receive Mode all captured frames are stored in a single memory buffer All VL data

streams are captured with the option for the user to filter capture frames by VLs or range of VLs.

In addition, the user can specify additional VL filters/checking to be performed if desired

including redundancy management, integrity checking and traffic shaping. This mode provides

for recording/saving the captured data for replay. Four Capture modes provide different

methods for capturing and storage of frames in the Monitor buffer. In addition, an extensive and

flexible trigger function is provided allowing the user to define specific conditions on which to

trigger/start data capture. Strobe inputs/outputs can also be used with the trigger functions to

signal start/stop of data capture or to enable specific trigger conditions.

The functions described in this section should be used after the port has been configured for

Chronological Monitor Receive Mode using the function FdxCmdRxModeControl, as

described in Section 4.3.1.1. Setting up the port when in Chronological Monitor Receive Mode

consists of the major steps defined below and described in further detail in the following

sections:

a. Defining the Capture mode

b. Allocating the Monitor Queue

c. Additional VL Filter Capability (optional)

d. Create Trigger conditions (optional)

...and once the Receive port is enable via FdxCmdRxControl as defined in Section

4.3.1.2

e. Reading the Captured Data (optional)

f. Retrieving Monitor Status

Note: If you set the Default Chronological mode to FDX_RX_DEFAULT_ENA_CNT (using

the FdxCmdRxModeControl function)where only the VL-Oriented counters are

updated and VLs are disabled for capturing, the functions described in this section do

not apply, with the exception of the VL Filter functions described in Section 4.3.3.3.

Chronologic (Monitor) Setup
(1) Define capture mode

(2) Create Monitor queue to hold

captured data.

ARINC664 / AFDX Programmer’s Guide 101

 Defining the Capture Mode

The function FdxCmdMonCaptureControl provides configuration of one of four Capture

modes and Strobe output based on Monitor Buffer Capture conditions as described below:

Capture Modes

SingleShot-Standard SingleShot-Selective Continuous Record

a. Capture Modes

 SingleShot-Standard

In this mode, each port uses a pre-defined buffer for capturing frames.

After this buffer is full, no more frames will be stored. The default size of

this buffer depends on your board type. Trigger Control Blocks (TCBs)

can be used in this mode to define the trigger condition that will start data

capture (default capture start is when a frame is received) and how much

"pre-trigger data" is to be stored in the capture buffer.

Listed below are some application examples:

- Capture messages before an erroneous packet is received (using 10%

of Monitor Buffer) for a particular VL and all messages after the

trigger event until the Monitor buffer is full.

- Capture messages received for a particular VL before an external

strobe input is received (using 25% of Monitor Buffer) and all

messages for the VL after the strobe input until the Monitor Buffer is

full.

 SingleShot-Selective

This mode is similar to SingleShot-Standard mode, but Trigger-Control-

Blocks are used for filtering, i.e. what data will be captured. Before a

frame is saved in the SingleShot-memory, it will be evaluated using the

active TCB. Only those frames which meet the TCB condition will be

saved.

Listed below are some application examples:

- Capture a message only if the value of a specific parameter is equal to

a specified value.

- Capture only packets with a certain error type.

- Capture packet when an external strobe input occurs.

ARINC664 / AFDX Programmer’s Guide 102

 Continuous

In this mode the capture buffer is used as a ring-buffer. User is

responsible for reading frames from the capture buffer at a fast enough

rate to prevent loss of incoming frames. Trigger Control Blocks can be

used in this mode to define the trigger condition that will start data

capture (default capture start is when a frame is received).

Listed below are some application examples:

- Continuously capture all messages received for a particular VL and

display them.

- Start capture when any frame is received for a particular VL, capture

only the frames received for the VL, and setup a TCB to indicate a

trigger condition when packets are received for the VL with an

unaligned frame length error. Display the packets that created the

trigger event.

 Record

In this mode, the Monitor buffer is organized in the same way as in

Continuous mode. However, the frames can be written directly to a

user-specified file for later replay, or fed directly to an output port,

configured for Replay, for immediate loopback.

 Trigger-Control Blocks can be used in this mode to define the trigger

condition that will start data capture (default capture start is when a frame

is received).

Listed below are some application examples:

- Continuously capture all messages received for all/a particular VL/or

range of VLs received and save the data in a file for subsequent

replay.

- Continuously capture all messages received for a particular VL with a

specific MAC/IP/UDP port address that contains a hex value of

'FAF3' in the fifth word of the payload data area for subsequent replay

or analysis.

b. Strobe Output - as described in Section 4.3.1.3 strobe output signals can be used

by the Receiver when in Chronological Receive mode to signal the following

conditions:

 Capture has stopped due to full Monitor Capture Buffer (SingleShot-

Standard or SingleShot-Selective Capture modes)

ARINC664 / AFDX Programmer’s Guide 103

 Capture has stopped due to half full Monitor Capture Buffer

(Continuous or Record mode)

 Capture has started (for all Capture modes)/re-started (for SingleShot

Selective Capture mode)

 Allocating the Monitor Queue

After the Chronological Monitor mode has been configured (FdxCmdRxModeControl) and the

Capture mode has been defined (FdxCmdMonCaptureControl), a Monitor queue for storing

captured data must be allocated by calling the function FdxCmdMonQueueControl. This

function will return a Queue ID for use with all future Monitor queue functions.

 Additional VL Filter Capability

When in Chronological Receive mode, the default VL-capture setting (initiated with function

FdxCmdRxModeControl set to Chronological Receive mode) is for all received VL's to be

captured. If you want to specify the VL or range of VLs to be captured, you need the

command(s) defined below. Otherwise, continue with Section 4.3.3.4, Creating Trigger

Conditions.

Note: This VL filter function is executed prior to Trigger Control Block processing.

a. FdxCmdRxVLControl - enables (or disables) an individual VL or range of

VLs to be monitored/captured.

 Payload mode - allows the user to override the default payload mode

previously defined with FdxCmdRxModeControl. The payload modes

available are shown in Fehler! Verweisquelle konnte nicht gefunden

werden..

 TCB Index - allows the user to specify trigger control block processing

for the given VL. See Section 4.3.3.4 for TCB setup details.

ARINC664 / AFDX Programmer’s Guide 104

 Enable mode - configures the level of monitoring to be performed as

defined below:

Monitoring Level

G
lo

b
al

 s
ta

ti
st

ic
s

o
n
ly

V
L

-s
p
ec

if
ic

st
at

is
ti

cs

S
to

re
 G

o
o
d

fr
am

es

S
to

re
 E

rr
o
n
eo

u
s

fr
am

es

A
ll

o
w

 e
x
te

n
d
ed

V
er

if
ic

at
io

n

m
o
d
e

an
d

ex
te

n
d
ed

fi
lt

er
in

g
*

ENA_STAT X

ENA_CNT X X

ENA_MON_GOOD X X X

ENA_MON_ALL X X X X

ENA_EXT X X X X X

*Verification mode, Extended Filter and FdxCmdRxVLControlEx (for extended

strobe signal and interrupt output) is defined below

 Verification mode - allows the user to define the type of verification to

be performed on the VL or range of VLs. (Only valid for Enable Mode

set to ENA_EXT.) Each verification mode requires that parameters be set

to establish the range of acceptable receive frame behavior as shown in

Table 4-14 including:

1. BAG values are in milliseconds and include 1, 2, 4, 8, 16, 32, 64,

128 msecs. Jitter range is 1 to 65535 µsecs

2. Max/Min Frame Length includes all fields shown below (except

the Preamble and Start Delimiter):

Preamble
Start

Delimiter

MAC

Header

IP

Header

UDP

Header AFDX Payload FCS

7 1 12 22 17…1471 48

AFDX

Sequence

Number

1

Preamble
Start

Delimiter

MAC

Header

IP

Header

UDP

Header AFDX Payload FCS

7 1 12 22 17…1471 48

AFDX

Sequence

Number

1

Frame-Size

Message

F3
F1 F2

BAG BAG

Maximum Jitter

Window

Jitter = 0 0 < Jitter < Max Jitter = Max

F3
F1 F2

BAG BAG

Maximum Jitter

Window

F3
F1 F2

BAG BAG

Maximum Jitter

Window

Jitter = 0 0 < Jitter < Max Jitter = Max

ARINC664 / AFDX Programmer’s Guide 105

3. Max Skew - the maximum time difference between the arrival

time of the redundant frame with the same sequence number.

Values are in microseconds with a range of 0 to 65535 µsecs.

 Extended Filter - allows the user to specify that the VL frames meet an

additional filter before being captured. (Only valid for Enable Mode set

to ENA_EXT.) This generic filter compares up to 4 bytes of the AFDX

frame with a user specified value. The user has the option to store the

frame if the values match/don't match.

b. FdxCmdRxVLControlEx - (optional) extended VL function to configure output

of a strobe signal or interrupt upon VL frame reception or frame reception error

or interrupt on VL Buffer Full/Half Full/Quarter Full. (Only valid for Enable

Mode set to ENA_EXT.)

Table 4-15 Verification Mode Options and Required Parameters (for Chronological Monitor

Receive Mode)

Verification Mode Description Default
Setting

Parameters
Required

re
d
u
n

d
a
n
t

m
o

d
e

s
in

g
le

 m
o
d
e

B
A

G

M
ax

 J
it

te
r

M
ax

 F
ra

m
e

L
en

g
th

M
in

 F
ra

m
e

L
en

g
th

M
ax

 S
k

ew

Redundancy
Management

Enable Redundancy Management
as described in AFDX End System
Detailed Functional Specification.
The discard counter is incremented
if the current received frame is
discarded by the RM facility for
either Port A or Port B.

Traffic shaping
Verification

Enable Traffic Shaping Verification
like described in AFDX Switch
Detailed Functional Specification. If
during the previous frame check, an
error occurs (except if Sequence
number error or Invalid Packet
Processing is enabled), the frame is
not fed to the TS facility

VL specific Frame size
Check

Maximum frame size for the given
VL is checked.

Sequence Number
Integrity check

Sequence numbering of the
incoming frames are checked

Invalid Packet
processing

All Packets, also the erroneous, will
be passed through to the buffer

ARINC664 / AFDX Programmer’s Guide 106

The following example sets up a VL Filter to capture only frames with VL ID of 1-10 when in

Single-Shot Standard Capture mode. Extended Verification is enabled for these VLs such that

Traffic Shaping can be performed. The parameters required to be set for Traffic shaping are

shown above and set as indicated below. Any errors associated with the Traffic shaping

parameters will be indicated in the Monitor Buffer entry for the associated frame. Counters for

errors associated with the Traffic Shaping can be obtained globally for all VLs using the

function FdxCmdRxGlobalStatistics or for individual VLs by using function

FdxCmdRxVLGetActivity as indicated in Table 4.3.1.3-I.

/* This example sets up a VL Filter to capture only frames with VL ID of 1-10. */

/* Extended Verification is enabled such that Traffic Shaping can be performed. */

TY_FDX_MON_CAP_MODE x_CapMode;

TY_FDX_RX_VL_CTRL x_VLControl;

TY_FDX_RX_VL_DESCRIPTION x_VLDescription;

x_CapMode.ul_CaptureMode = FDX_MON_SINGLE; /* Single-Shot Standard capture mode */

x_CapMode.ul_TriggerPosition = 50; /*Set Trigger postion to middle of Monitor memory*/

x_CapMode.ul_Strobe = FDX_MON_STROBE_DIS;/* No strobe on Capture start/stop */

x_VLControl.ul_VLId = 1;

x_VLControl.ul_VLRange = 10;

x_VLControl.ul_EnableMode = FDX_RX_VL_ENA_EXT;

x_VLControl.ul_PayloadMode = FDX_PAYLOAD_FULL;

x_VLControl.ul_TCBIndex = 0xFF;

x_VLDescription.ul_Bag = 16; /* 16 milliseconds */

x_VLDescription.ul_Jitter = 40; /* 40 milliseconds */

x_VLDescription.ul_MaxFrameLength = 1400; /* 1400 bytes */

x_VLDescription.ul_MaxSkew = 0; /* N/A for non-redundant mode */

x_VLDescription.ul_VerificationMode = FDX_RX_VL_CHECK_TRAFIC;

x_VLDescription.ul_VLBufSize = 0;

x_VLDescription.x_VLExtendedFilter.ul_FilterMode = FDX_DIS;

x_VLDescription.x_VLExtendedFilter.ul_FilterMask = 0;

x_VLDescription.x_VLExtendedFilter.ul_FilterPosition = 0;

if (FDX_OK != (FdxCmdRxVLControl(ul_Handle,&x_VLControl,&x_VLDescription)))

 printf("\r\nFdxCmdRxVLControl() failed.");

ARINC664 / AFDX Programmer’s Guide 107

 Creating Trigger Conditions

Chronological Monitor mode has a default trigger defined to start capture once any frame

has been received for all VL's. If you need more specific triggers to define when to start data

capture or to define what is to be captured then this section will guide you in understanding TCB

setup.

Note: At packet reception, the Monitor TCB processing will be executed after the Error

Verification facility, the Redundancy Management (if enabled) and the VL- Filter

processing (Section 4.3.3.3). Therefore, if one of the previous facilities discards the

received packet, then the monitor TCB processing will not be executed.

The API functions described in this section will provide flexible and comprehensive trigger

conditions and trigger sequencing for monitor start, enabling detailed analysis of VL packet

based traffic. Triggers can be defined for error conditions, external strobe input, data patterns

received within the frame, or to make it easy, the reception of any frame received.

The Trigger Control Blocks (TCBs) define an event/condition within a received data packet that

trigger data capturing or assert an external strobe. TCB(s) can be linked/assembled to create a

sequence of trigger events, which will start the data capturing or assert an external strobe as

shown in Table 4-16.
Table 4-16 TCB Content

TCB Parameter Description

TCB Index 1 - 253

Trigger Type Trigger on:

1. Error (Error Trigger)

2. External Strobe*

3. Generic Data Pattern (Generic Trigger)

4. Reception of any frame

for Generic Trigger The position relative to start of frame, the mask and the

compare value for the Generic Data Pattern Trigger Type

for Error Trigger The Error Trigger Condition for the Error Trigger Type (See

Table 4-17)

Next True Index The index of the next TCB to evaluate after the condition for

this TCB is True

Next False Index The index of the next TCB to evaluate after the condition for

this TCB is False

Trigger Bits Trigger Bits in the Monitor Status Trigger Pattern to set/clear

if the TCB evaluation is True (for start of capture condition)

TCB Extended Parameters Assert strobe if TCB evaluation is True

Assert interrupt if TCB evaluation is True

*Note: If the 'Trigger on External Strobe Event' is used in redundant operation mode, the TCB

process shall allocate the same trigger input line for Port A and Port B.

ARINC664 / AFDX Programmer’s Guide 108

Table 4-17 Error Conditions Available for Triggers

Error Definition Symbol

Wrong physical Symbol during frame reception. PHY

Wrong Preamble/Start Frame Delimiter received. PRE

Unaligned Frame length received TRI

MAC CRC Error. CRC

Short Interframe Gap Error (<960ns) IFG

Frame without valid Start Frame Delimiter received SFD

AFDX IP Framing Error (AFDX-IP frame specific settings violated). IPE

AFDX MAC Framing Error (AFDX-MAC frame specific settings violated). MAE

Long Frame Received (> 1518 Bytes up to 2000 bytes) LNG

Short Frame Received (40 to < 64 Bytes) SHR

VL specific Frame size Violation VLS

Sequence No. Mismatch SNE

Traffic Shaping Violation TRS

Once you have setup your trigger conditions using the TCB(s), you will then tell the trigger

process which TCB to evaluate. This is done by setting up the global Monitor Trigger Index

Word using FdxCmdMonTrgIndexWordIni.

You also need to tell the trigger process what the final value of the Monitor Status Trigger

Word will be when the TCB or sequence of TCB conditions is true. This is done by setting up

the Start Trigger Compare and Mask value using function FdxCmdMonTrgWordIni.

As shown in Figure 4-7, each TCB defines the modification of the Monitor Status Trigger

Word each time a TCB evaluation is True. If the Monitor Status Word, when masked with

the user-defined Start Trigger Mask is equal to the Start Trigger Compare, then the start

trigger condition will become true and data capture will be started.

If you need to enable the trigger process to evaluate only a specific VL, you need to use

FdxCmdMonTrgIndexWordIniVL which will enable the TCB process to evaluate the TCB

Index specified with FdxCmdMonTrgIndexWordIniVL when that VL is being

received/evaluated.

ARINC664 / AFDX Programmer’s Guide 109

Figure 4-7 TCB Evaluation Process

TCB #0

TCB #1

TCB #n

"next" = 1

"next" = n

"next" = 0

TCB Sequence defined via:
 FdxCmdMonTCBSetup(...)

modified on TCB result true/false ("next" != 255)

reserved TCBI
Global Monitor Trigger Index Word Initialized via: FdxCmdMonTrgIndexWordIni(...)

 reserved Start Trigger Mask
Initialized via: FdxCmdMonTrgWordIni(...)

e.g initialize with #0

 Monitor Status Trigger Bits
htm

Global Monitor Status Word (internal)

"TriggerBits clear/set"
&

= Start Trigger

modified on reception of a frame on a specific VL
(defined via FdxCmdMonTrgIndexWordIniVL(...))

For Trigger Sequences, all types
of TCBs can be used

controls TCB evaluation

controls Trigger generation

Global Monitor Trigger Word
 Start Trigger Comp

Typical Trigger Setup Command Sequence
1 Define TCB(s) and implicitly a Trigger Sequence if neccessary FdxCmdMonTCBSetup(...)
2 Initialize Monitor Trigger Word FdxCmdMonTrgWordIni(...)
3 Initialize Monitor Trigger Index Word with the TCB Start Index FdxCmdMonTrgIndexWordIni(...)
4 Initialize VL related Trigger Index with a TCB Index if neccessary FdxCmdMonTrgIndexIniVL(...)

ARINC664 / AFDX Programmer’s Guide 110

To review, the following functions are used to setup the trigger functionality when in

Chronological Receive mode.:

a. FdxCmdMonTCBSetup - configures one TCB as shown in Table 4-16.

Multiple FdxCmdMonTCBSetup commands may be required when TCBs are

to be linked together.

b. FdxCmdMonTrgWordIni - defines the final Start Trigger Compare value that

the Monitor Status Trigger Word must equal when masked with the Start Trigger

Mask. Once these values are equal, the trigger will be initiated and capture will

be started. (Strobe output can be performed on capture start/restart based on how

the user defined the parameters in FdxCmdMonCaptureControl.)

c. FdxCmdMonTrgIndexWordIni - defines the TCB to be used for evaluation by

the TCB process.

d. FdxCmdMonTrgIndexIniVL - (optional) defines the TCB to be used for a

specific VL. This TCB will temporarily override the global Monitor Trigger

Index Word while packets from this VL are being received and evaluated. (As

described in Section 4.3.3.3, FdxCmdRxVLControl defines an initial value for a

trigger condition to be evaluated for a particular VL or range of VLs.

FdxCmdMonTrgIndexIniVL can be used to modify the trigger condition to be

evaluated for a specific VL "on-the-fly", thus overriding the TCB Index specified

with the function FdxCmdRxVLControl.)

/*

 * This example shows how to set up a sequence of 2 Trigger Control Blocks when in

 * Selective Capture mode. The Capture mode and TCBs are setup to capture only the

 * frames received for VL100 with either a short or long frame error. If an error

 * occurs, a strobe output will be generated.

 */

TY_FDX_MON_CAP_MODE x_CapMode;

TY_FDX_MON_TCB_SET x_MonTCBSet;

TY_FDX_MON_TRG_WORD_INI x_MonTrgWordIni;

x_CapMode.ul_CaptureMode = FDX_MON_SELECTIVE; /* switch to selective capture mode */

x_CapMode.ul_TriggerPosition = 0; /*Trigger postion N/A in Selective mode*/

x_CapMode.ul_Strobe = FDX_MON_STROBE_DIS;/* No strobe on Capture start/stop */

printf("\r\n Setup Capture Mode ");

if (FDX_OK != (FdxCmdMonCaptureControl(ul_Handle,&x_CapMode)))

 printf("\r\nFdxCmdMonCaptureControl() failed.");

/* Setup TCB No 1 to trigger on generic event (VL=100)*/

x_MonTCBSet.ul_TrgType = FDX_TRG_GENERIC;

x_MonTCBSet.ul_NextTrueIndex = 2;

x_MonTCBSet.ul_NextFalseIndex = 1;

x_MonTCBSet.ul_TriggerBits = 0x010F; /* Set Bits 0x01; Reset Bits 0x0F */

x_MonTCBSet.ul_TCBEx = 0;

x_MonTCBSet.x_GenTrg.ul_GenBytePos = 4;

x_MonTCBSet.x_GenTrg.ul_GenTrgType = FDX_TRG_TCB_GEN_STD;

ARINC664 / AFDX Programmer’s Guide 111

x_MonTCBSet.x_GenTrg.ul_GenTrigComp =0x00640000; /* Compare MAC address of VL 100 */

x_MonTCBSet.x_GenTrg.ul_GenTrigMask = 0xFFFF0000;

if (FDX_OK != FdxCmdMonTCBSetup (ul_Handle,1,&x_MonTCBSet))

 printf("\r\nFdxCmdMonTCBSetup() failed.");

/* Setup TCB No 2 to trigger on long frame or short frame error */

x_MonTCBSet.ul_TrgType = FDX_TRG_ERROR;

x_MonTCBSet.ul_NextTrueIndex = 3;

x_MonTCBSet.ul_NextFalseIndex = 1;

x_MonTCBSet.ul_TriggerBits = 0x020F; /* Set Bits 0x02; Reset Bits 0x0F */

x_MonTCBSet.ul_TCBEx = 1; /* Assert strobe output if TCB eval is true */

x_MonTCBSet.x_ErrTrg.ul_ErrType = FDX_LONG_FRAME_ERROR|FDX_SHORT_FRAME_ERROR;

if (FDX_OK != FdxCmdMonTCBSetup (ul_Handle,2,&x_MonTCBSet))

 printf("\r\nFdxCmdMonTCBSetup() failed.");

/* Setup Function Trigger Word */

x_MonTrgWordIni.ul_StartTriggerComp = 0x03; /* Trigger compare is set to combination

 of TCB's set bit. */

x_MonTrgWordIni.ul_StartTriggerMask = 0x0F;

if (FDX_OK != FdxCmdMonTrgWordIni (ul_Handle,&x_MonTrgWordIni))

 printf("\r\nFdxCmdMonTrgWordIni() failed.");

/* Setup Function Trigger Index Word to start evaluating TCB1*/

if (FDX_OK != FdxCmdMonTrgIndexWordIni (ul_Handle,1))

 printf("\r\nFdxCmdMonTrgIndexWordIni() failed.");

ARINC664 / AFDX Programmer’s Guide 112

 Reading the Captured Data

After you have configured the receiver for the appropriate capture mode, VL-Filter and/or

trigger setup, the receiver can be started using FdxCmdRxControl as defined in section 4.3.1.2.

Captured data can then be retrieved from the monitor queue.

The default size of the monitor queue is board dependant. The size of the monitor queue can be

specified with the FdxCmdRxModeControl function.

When designing your application for chronological monitoring there are several design

considerations to remember including:

a. The size of the monitor queue and the expected rate of capture - determines how

often you need to read captured frames from the monitor queue

b. The capture mode selected

 Continuous and Record Capture modes - continuously writes incoming

frames to the monitor queue. Therefore, to display/record all data

captured you need to read entries from the monitor queue

(FdxCmdMonQueueRead) periodically at a rate that will insure no

entries are lost. FdxCmdMonQueueRead initially reads the number of

frames requested beginning at the first frame in the queue. The next time

you call the FdxCmdMonQueueRead, the pointer is automatically

updated to read the next frame in the queue.

 When in Record mode, captured data read from the monitor queue can

either be used directly for Replay via the FdxCmdTxQueueWrite

function (if configured for Replay) or saved to a record file to be used for

later replay.

 SingleShot-Standard or SingleShot-Selective - both modes will only fill

the monitor queue once. You may want to wait until the monitor queue is

full before reading by checking monitor queue status

(FdxCmdMonQueueStatus) for Full condition. For SingleShot-

Selective, since only frames that meet the trigger condition are captured,

the monitor buffer may take longer to be filled (depending on your trigger

setup), therefore, you may want to periodically read the monitor queue

(FdxCmdMonQueueRead) to determine if any new entries have been

captured.

If required, you may need to use the seek function, FdxCmdMonQueueSeek o override the

read pointer in the monitor queue used when FdxCmdMonQueueRead is called.

FdxCmdMonQueueSeek can be used, for example, to read the 3rd captured frame on the first

call to the Read command. It can also be used to set the internal read pointer to the second

monitor queue entry from the start trigger position.

ARINC664 / AFDX Programmer’s Guide 113

 The Tell function FdxCmdMonQueueTell just returns the current

location of the read pointer within the queue. This can be used to help the

user keep track of the internal monitor queue pointer if needed.

c. A strobe output signal can be asserted on capture stop, on half monitor buffer full

or capture start/re-start using FdxCmdMonCaptureControl as discussed in

Section 4.3.1.3.

ARINC664 / AFDX Programmer’s Guide 114

The following monitor queue functions are available to enable you to retrieve captured frames

and examine the status of each individual frame received. As stated above, there is no pre-

determined order or method to use these functions as each user's requirements are different.

a. FdxCmdMonGetStatus - indicates the state of the monitor as shown in Figure

4-8 and the number of frames captured since trigger start (Continuous or Record

mode only). This information can be used to determine whether you want to Read

the monitor queue or wait. Below are the possible monitor states and examples of

actions to be taken based on the state.

1. Monitor is off

2. Monitor is waiting for Trigger

3. Monitor start trigger has occurred. Data is being captured.

- When in Continuous or Record capture mode, you may want

to use the number of frames captured parameter returned to

determine the number of entries to read when using

FdxCmdMonQueueRead. Save the frames captured counter

and use again after you request status again to determine how

many new entries to read in the monitor queue.

4. Capturing has stopped - For SingleShot-Selective mode

- If in SingleShot-Selective mode and a transition from triggered

to stopped has occurred, then at least one frame that meets

your trigger conditions defined in the TCB(s) has been

captured. You may then want to perform a monitor queue read

using FdxCmdMonQueueRead.

5. Monitor buffer is full and no more data will be captured. This

status is only applicable to SingleShot-Standard and SingleShot-

Selective capture modes.

- If in SingleShot-Standard mode you may only want to read the

monitor queue after it is full. At that time, you can dump the

entire monitor queue to required memory for display purposes.

ARINC664 / AFDX Programmer’s Guide 115

 Figure 4-8 Capture States

Off

waiting

for start

trigger
triggered

stopped

full

Got start condition.

capturing data for

 pre trigger

Trigger condition

went TRUE.

Capturing data.

Trigger condition

went FALSE.

stop capturing data.

Trigger condition

went TRUE again.

Capturing data

Monitor buffer is full.

no more data capturing

posible.

Switch of monitor

for restart.

ARINC664 / AFDX Programmer’s Guide 116

The following code creates a Monitor Queue, Performs a read of the Monitor Queue, and if the

number of entries read is not zero, the frame information is copied to a record file, and

information from the frame is printed. The Queue is then deleted - which is required prior to

termination of the program.
/*

* This example reads one entry from the Monitor Queue

*/

AiUInt32 aul_Data[0x10000];

AiUInt32 ul_QueueId;

TY_FDX_MON_QUEUE_CTRL_IN x_QueueCtrlIn;

TY_FDX_MON_QUEUE_CTRL_OUT x_QueueCtrlOut;

TY_FDX_MON_QUEUE_READ_IN x_QueueReadIn;

TY_FDX_MON_QUEUE_READ_OUT x_QueueReadOut;

TY_FDX_FRAME_BUFFER_HEADER* px_FrameBufferHeader;

#define REC_SIZE 0x10000

AiUInt8 ac_RecData[REC_SIZE];

AiUInt32 ul_RecBytes;

/* Create a Queue */

x_QueueCtrlIn.ul_QueueControl = FDX_MON_QUEUE_CREATE;

if (FDX_OK == (FdxCmdMonQueueControl(ul_Handle, &x_QueueCtrlIn, &x_QueueCtrlOut)))

{

 ul_QueueId = x_QueueCtrlOut.ul_QueueId;

}

else {

 printf("\r\nFdxCmdMonQueueControl() failed.");

 exit (1); //exit this process - can't do anything without a queue id

}

/* Read a Queue */

x_QueueReadIn.ul_EntryCount = 1; /* Read one entry */

x_QueueReadIn.ul_MaxReadBytes = sizeof(aul_Data);

x_QueueReadIn.ul_ReadQualifier = FDX_MON_READ_FULL; // Read fixed header + AFDX Frame

x_QueueReadOut.pv_ReadBuffer = aul_Data;

if (FDX_OK != (FdxCmdMonQueueRead(ul_Handle, ul_QueueId, &x_QueueReadIn,

 &x_QueueReadOut)))

{

 printf("\r\nFdxCmdMonQueueRead() failed.");

}

if (x_QueueReadOut.ul_EntryRead > 0)

{

 ul_RecBytes = x_QueueReadOut.ul_BytesRead;

 printf("\n %ld Bytes recorded / Frames read:%ld", ul_RecBytes,

 x_QueueReadOut.ul_EntryRead);

 /* copy all the bytes read for the entry to a record array */

 memcpy(ac_RecData,x_QueueReadOut.pv_ReadBuffer,x_QueueReadOut.ul_BytesRead);

 px_FrameBufferHeader = (TY_FDX_FRAME_BUFFER_HEADER*) x_QueueReadOut.pv_ReadBuffer;

 /* print the sequence number and time tag from the Fixed entry header*/

 printf("\n SN = %08x TtHigh = %08lX TtLo = %08lX ",

 px_FrameBufferHeader->x_FrameHeaderInfo.uc_SequenceNr,

 px_FrameBufferHeader->x_FwIrigTime.ul_TtHigh,

 px_FrameBufferHeader->x_FwIrigTime.ul_TtLow);

 /* Print the network (A or B) the data was received on which is found in the */

 /* Frame Header Word 1 of the Fixed Entry Header **/

 if ((px_FrameBufferHeader->x_FrameHeaderInfo.ul_FrameHeaderWord_1 & 0x20000000)

 == 0x20000000)

ARINC664 / AFDX Programmer’s Guide 117

 printf("\n Received on Net A");

 else if ((px_FrameBufferHeader->x_FrameHeaderInfo.ul_FrameHeaderWord_1 &

 0x40000000) == 0x40000000)

 printf("\n Received on Net B");

 else

 printf("\n Network ID wrong");

 /* Print the first 128 bytes of the AFDX data frame */

 printf("\n Data: 0000: %08lx %08lx %08lx %08lx ", aul_Data[0], aul_Data[1],

 aul_Data[2], aul_Data[3]);

 printf("\n Data: 0010: %08lx %08lx %08lx %08lx ", aul_Data[4], aul_Data[5],

 aul_Data[6], aul_Data[7]);

 printf("\n Data: 0020: %08lx %08lx %08lx %08lx ", aul_Data[8], aul_Data[9],

 aul_Data[10], aul_Data[11]);

 printf("\n Data: 0030: %08lx %08lx %08lx %08lx ", aul_Data[12], aul_Data[13],

 aul_Data[14], aul_Data[15]);

 printf("\n Data: 0030: %08lx %08lx %08lx %08lx ", aul_Data[16], aul_Data[17],

 aul_Data[18], aul_Data[19]);

 printf("\n Data: 0030: %08lx %08lx %08lx %08lx ", aul_Data[20], aul_Data[21],

 aul_Data[22], aul_Data[23]);

 printf("\n Data: 0030: %08lx %08lx %08lx %08lx ", aul_Data[24], aul_Data[25],

 aul_Data[26], aul_Data[27]);

 printf("\n Data: 0030: %08lx %08lx %08lx %08lx \n\n", aul_Data[28], aul_Data[29],

 aul_Data[30], aul_Data[31]);

}

else

{

 printf("\n No entries available.");

}

printf("\n.Queue Delete....\n");

/* Delete a Queue */

x_QueueCtrlIn.ul_QueueControl = FDX_MON_QUEUE_DELETE;

x_QueueCtrlIn.ul_QueueId = ul_QueueId;

if (FDX_OK != (FdxCmdMonQueueControl(ul_Handle, &x_QueueCtrlIn, &x_QueueCtrlOut)))

{

 printf("\r\nFdxCmdMonQueueControl() failed.");

}

ARINC664 / AFDX Programmer’s Guide 118

THIS PAGE INTENTIONALLY LEFT BLANK

ARINC664 / AFDX Programmer’s Guide 119

5 PROGRAM SAMPLES

Within this section, the program samples will be described. There is sample code available with

the PCI-FDX BSP. The samples consists of several modules. Each of these modules can be used

by program developers as example for learning and developing their code. This section will

discuss the following:

a. Overview of Sample Programs

b. Sample Modules:

Module Description

afdx_MainSample.cpp Sample User Interface, Initialisation

afdx_SystemFunc.cpp Board level functions, Board Configuration, IRIG

afdx_SampleUtils.cpp Additional functions (not AFDX specific)

afdx_LogInOut.cpp Library Administration functions

afdx_GenericRX.cpp Generic receiver functions.

afdx_GenericTX.cpp Generic transmitter functions.

afdx_GenRX_CCSE.cpp Generic receiver functions using continuous capture
second edition.

afdx_GenTX_Ext.cpp Generic transmitter functions using extended generic
transmit modes (buffer queues and transmit sub queues).

afdx_InterruptFunc.cpp Interrupt functions.

afdx_ReplayFunc.cpp Setup FDX replay mode

afdx_SimulationRX.cpp Individual receiver functions (UDP and SAP port related)

afdx_SimulationTX.cpp Individual tranmitter functions (UDP and SAP port related)

afdx_UdpRx.cpp Setup UDP receiver by using VL and UDP port
configuration files (*.csv)

afdx_UdpTx.cpp Setup UDP tansmitter by using VL and UDP port
configuration files (*.csv)

c. Matrix of all API S/W Library Calls vs. Sample Programs

The sample program files contained in the BSP is located in the sample program (spg) file:

x:\Program Files\AIM GmbH\PCI-FDX-Windows-BSP-Vxxxx\spg

In order to run a sample project, please refer to the PCI FDX and

fdXTapTM Getting Started Manual. The Reference Manual AFDX/

ARINC-664 will provide further detail on library calls and parameter

naming conventions used within these sample programs.

ARINC664 / AFDX Programmer’s Guide 120

5.1 Program Samples Overview

Table 5-1-I provides a list and functional description of the sample programs. You may choose

to use one or more sample programs as a starter program to be modified.

Table 5-1 Program Samples Overview

afdx_udp_sample01.cpp (Section 5.2.1) - This sample demonstrates how to:

1. Query available resources and login to a local board and two ports.

2. Reset the board and synchronize board-IRIG-time with PC-time.

3. Setup Port 1 for UDP Port-Oriented transmit mode, i.e., VL & UDP Ports are

defined. VL traffic shaping is supported in this mode.

4. Setup Port 2 to capture using the VL-Oriented Receive mode i.e. individual

buffers for each received VL are provided.

5. Port1 sends data to Port2. (an ethernet connection between Port 1 and Port 2 is

required.)

afdx_generic_sample01.cpp (Section 5.2.2) - This sample demonstrates how to:

1. Query available resources and login to a local board and two ports.

2. Reset the board and synchronize board-IRIG-time with PC-time.

3. Setup Port 1 for Generic transmit mode i.e., a list of AFDX frames with

additional header information can be sent from a specified queue cyclically or a

specific number of times

4. Setup Port 2 to capture using the Chronological Monitor Receive mode i.e.,

Data of all enabled links are stored in one large chronological monitor buffer.

5. Port1 sends data to Port2. (an ethernet connection between Port 1 and Port 2 is

required.)

afdx_sample.exe (included in the BSP)- This sample program demonstrates API function calls

through a user interface as shown in Figure 5-1. (source code included)

ARINC664 / AFDX Programmer’s Guide 121

Figure 5-1 afdx_Sample.exe User Interface

ARINC664 / AFDX Programmer’s Guide 122

5.2 Program Sample Code

5.2.1 UDP-Port Oriented Transmission/VL-Oriented Monitor Storage

This sample demonstrates how to:

1. Query available resources and login to a local board and two ports.

2. Reset the board and synchronize board-IRIG-time with PC-time.

3. Setup Port 1 for UDP Port-Oriented transmit mode, i.e., VL & UDP Ports are

defined. VL traffic shaping is supported in this mode.

4. Setup Port 2 to capture using the VL-Oriented Receive mode i.e. individual

buffers for each received VL are provided.

5. Port1 sends data to Port2. (an ethernet connection between Port 1 and Port 2 is

required.)

// afdx_udp_sample01.cpp

//

#include "stdafx.h"

#include <time.h>

#include "aifdx_def.h"

//--

// Defines

//--

 // communication parameters

#define DEF_VL (60)

#define DEF_SUB_VLCNT (2)

#define DEF_SUB_VLID1 (1)

#define DEF_SUB_VLID2 (2)

#define DEF_SRC_MAC_LSLW (0x00012120)

#define DEF_SRC_MAC_MSLW (0x00000200)

#define DEF_SRC_IP (0x0a012101)

#define DEF_DST_IP (0xe0e0003c)

#define DEF_SRC_UDP1 (24)

#define DEF_DST_UDP1 (23)

#define DEF_SRC_UDP2 (33)

#define DEF_DST_UDP2 (34)

#define DEF_BAG (50)

#define DEF_FRAME_MAXLENGTH (1518)

#define DEF_UDP_MAXMSG (500)

#define DEF_UDP_SAMPLING_RATE (100)

aifdx_def.h header file is the only header file

required for inclusion to support the AIM API. It

contains the constant, structure and function

definitions used in the API.

ARINC664 / AFDX Programmer’s Guide 123

//--

// Function-Declarations

//--

bool MyFdxInit();

void MyFdxFreeResources();

void MyFdxResetBoard();

void MyFdxResetPort();

void MyFdxSetupTxPort();

void MyFdxSetupRxPort();

void MyFdxStartTx();

void MyFdxStartRx();

void MyFdxStopTx();

void MyFdxStopRx();

void MyFdxGetStatus();

void MyFdxGetVLActivity();

//--

// Globals

//--

AiUInt32 g_ulBoardHandle = 0;

AiUInt32 g_ulPort1Handle = 0; // acts as Tx

AiUInt32 g_ulPort2Handle = 0; // acts as Rx

AiUInt32 g_pUdp1Port1Handle = 0;

AiUInt32 g_pUdp2Port1Handle = 0;

AiUInt32 g_pUdp1Port2Handle = 0;

AiUInt32 g_pUdp2Port2Handle = 0;

char g_stop;

Function defintions used for

functions defined within this

program.

ARINC664 / AFDX Programmer’s Guide 124

//--

// main

//--

int main(int argc, char* argv[])

{

 /*--- init application interface, query resources on local server and login to get valid

 handles */

 printf("\n");

 printf("Performing API initialization and local resource login..\n");

 if (MyFdxInit())

 {

 printf("API initialized, Login successful\n");

 //--- reset

 printf("\nPerforming board-reset and syncronizing IRIG to PC-Time...\n");

 MyFdxResetBoard();

 printf("\nPerforming port-resets...\n");

 MyFdxResetPort();

 printf("Press Any key to continue\n");

 getchar();

 //--- setup

 printf("\nPerforming Tranmitter setup on Port 1...\n");

 MyFdxSetupTxPort();

 printf("\nPerforming Receiver setup on Port 2...\n");

 MyFdxSetupRxPort();

 //--- Start Receiver

 printf("\nPerforming Receiver startup...\n");

 MyFdxStartRx();

 //--- Start Transmitter

 printf("\nPerforming Transmitter startup...\n");

 MyFdxStartTx();

 }

 else

 {

 printf("API Open Failure!!!\n");

 }

 MyFdxGetStatus();

 return 0;

}

The main program provides an overview of the order of any basic application program:

Initialization--->Board setup--->Port Setup--->Frame-Data Setup for Tx--->

Monitor Setup for Rx--->StartTx/Rx

After starting Tx/Rx - MyFdxGetStatus provides user controlled action for:

1. Check Tx Status

2. Check Rx Status

3. Exit

Each local function contains the API function calls required to perform these capabilities.

ARINC664 / AFDX Programmer’s Guide 125

//--

// MyFdxInit - returns true on success

//--

// Init the application interface and

// gets the global handles to local resources

//--

bool MyFdxInit()

{

 DWORD dwTmp;

 bool bRetSuccess = false;

 bool bFoundLocalServer = false;

 TY_SERVER_LIST * px_ServerNames = NULL;

 TY_SERVER_LIST * px_TmpServer;

 TY_RESOURCE_LIST_ELEMENT * pRLE = NULL;

 TY_RESOURCE_LIST_ELEMENT * pRLEHead = NULL;

 TY_FDX_CLIENT_INFO x_ClientInfo;

 //--- init client-info

 sprintf(x_ClientInfo.ac_ClApplication, "AFDX-Sample Application");

 sprintf(x_ClientInfo.ac_ClApplicationVersion, "1.0");

 dwTmp = MAX_FDX_CLIENT_HOST_NAME;

 ::GetComputerName((LPWSTR)(x_ClientInfo.ac_ClHostName), &dwTmp);

 dwTmp = MAX_FDX_CLIENT_USER_NAME;

 ::GetUserName((LPWSTR)(x_ClientInfo.ac_ClUser), &dwTmp);

 //--- application interface initialize

 // and get a list of available servers

 if (FdxInit(&px_ServerNames) != FDX_OK)

 {

 printf("API Open Failed!!!\n");

 // free the server-list

 if (px_ServerNames != NULL)

 {

 FdxCmdFreeMemory(px_ServerNames, px_ServerNames->ul_StructId);

 }

 return(bRetSuccess);

 }

 // search the server-list for local server

 px_TmpServer = px_ServerNames;

 while ((px_TmpServer != NULL) && (!bFoundLocalServer))

 {

 if (stricmp(px_TmpServer->auc_ServerName, "local") == 0)

 {

 bFoundLocalServer = true;

 }

 else

 {

 px_TmpServer = px_TmpServer->px_Next;

 }

 }

 if (bFoundLocalServer)

 { // ok, we found a local server

 // lets query the configuration of this server

 if (FdxQueryServerConfig("local", &pRLEHead) == FDX_OK)

 {

 pRLE = pRLEHead;

 while (pRLE != NULL)

 { //--- login to resources

 switch(pRLE->ul_ResourceType)

 {

The first local function (called

by the main program) to be

executed performs:

(1) Initialization of the API

(2) Board login

(3) Port(s) login.

GetComputerName/GetUserName are

MSWindows functions that retrieve the

computer name/user name of the current

system. These values are used for the

FdxLogin function.

FdxInit returns the names of available servers at

px_ServerNames. If px_ServerNames = "local", the

AFDX board is located where the API is running. If

px_ServerNames = "NULL", the end of the list has been

reached. Note: this version will only return "local".

If a local server was found then the local

server is searched for available AFDX

boards, using FdxQueryServerConfig.

FdxQueryServerConfig will return a list of

resouces (board and port) available which will

be used as an input for FdxLogin. The following

code assumes an FDX-2 board configuration,

thus only logging into one board and two ports.

ARINC664 / AFDX Programmer’s Guide 126

 case RESOURCETYPE_BOARD:

 if (g_ulBoardHandle == 0)

 {

ARINC664 / AFDX Programmer’s Guide 127

 if (FdxLogin("local", &x_ClientInfo, pRLE->ul_ResourceID,

 PRIVILEGES_ADMIN, &g_ulBoardHandle) != FDX_OK)

 {

 g_ulBoardHandle = 0;

 printf("Board Login Failure!!!\n");

 }

 }

 break;

 case RESOURCETYPE_PORT:

 if (g_ulPort1Handle == 0)

 {

 if (FdxLogin("local", &x_ClientInfo, pRLE->ul_ResourceID,

 PRIVILEGES_ADMIN, &g_ulPort1Handle) != FDX_OK)

 {

 g_ulPort1Handle = 0;

 printf("Port 1 Login Failure!!!\n");

 }

 }

 else if (g_ulPort2Handle == 0)

 {

 if (FdxLogin("local", &x_ClientInfo, pRLE->ul_ResourceID,

 PRIVILEGES_ADMIN, &g_ulPort2Handle) != FDX_OK)

 {

 g_ulPort2Handle = 0;

 printf("Port 2 Login Failure!!!\n");

 }

 }

 break;

 }

 pRLE = pRLE->px_Next;

 }

 }

 }

 // free the resource-list

 if (pRLEHead != NULL)

 {

 FdxCmdFreeMemory(pRLEHead, pRLEHead->ul_StructId);

 }

 // free the server-list

 if (px_ServerNames != NULL)

 {

 FdxCmdFreeMemory(px_ServerNames, px_ServerNames->ul_StructId);

 }

 // we define it as success if we have valid handles for all global variables....

 bRetSuccess = (g_ulBoardHandle != 0) && (g_ulPort1Handle != 0) && (g_ulPort2Handle != 0);

 return bRetSuccess;

}

//--

// MyFdxResetBoard

//--

void MyFdxResetBoard()

{

 int i;

 AiUInt32 ul_Mode;

 time_t loc_time;

 struct tm * ptm;

 TY_FDX_BOARD_CTRL_IN x_BoardCtrlIn;

 TY_FDX_BOARD_CTRL_OUT x_BoardCtrlOut;

FdxLogin returns the handle for the

board or port resource.

The memory allocated when either

resources were found using

FdxQueryServerConfig, or server was

found using FdxInit, must be released

prior to termination of the program.

The second local function (called by the

main program) demonstrates two System

(Board-level) functions to:

(1) Configure each port as either single or

redundant, and set up the network bit

rate (default, as in this case, is 100

Mbps)

(2) Initialize the internal Board IRIG time.

ARINC664 / AFDX Programmer’s Guide 128

 TY_FDX_IRIG_TIME x_IrigTime;

 memset(&x_IrigTime, 0, sizeof(x_IrigTime));

 memset(&x_BoardCtrlIn, 0, sizeof(x_BoardCtrlIn));

 memset(&x_BoardCtrlOut, 0, sizeof(x_BoardCtrlOut));

 if (g_ulBoardHandle > 0)

 {

 //--- init input structure

 for (i=0; i<FDX_MAX_BOARD_PORTS; i++)

 {

 x_BoardCtrlIn.aul_PortConfig[i] = FDX_SINGLE;

 x_BoardCtrlIn.aul_ExpertMode[i] = FDX_EXPERT_MODE;

}

 x_BoardCtrlIn.ul_RxVeriMode = FDX_BOARD_VERIFICATION_TYPE_DEFAULT;

 //--- reset board

 if (FDX_OK != (FdxCmdBoardControl(g_ulBoardHandle,

 FDX_WRITE, &x_BoardCtrlIn, &x_BoardCtrlOut)))

 for (i=0; i<FDX_MAX_BOARD_PORTS; i++)

 {

 x_BoardCtrlIn.aul_PortConfig[i] = FDX_SINGLE;

 x_BoardCtrlIn.aul_ExpertMode[i] = FDX_EXPERT_MODE;

}

 x_BoardCtrlIn.ul_RxVeriMode = FDX_BOARD_VERIFICATION_TYPE_DEFAULT;

 //--- reset board

 if (FDX_OK != (FdxCmdBoardControl(g_ulBoardHandle,

 FDX_WRITE, &x_BoardCtrlIn, &x_BoardCtrlOut)))

 {

 printf("Board Reset Failure!!!\n");

 }

 else

 {

 printf("Board Initialized\n");

 }

 //--- sync board-internal irigtime-source with PC-time

 loc_time = time(NULL);

 ptm = localtime(&loc_time);

 if (ptm != NULL)

 {

 x_IrigTime.ul_Day = ptm->tm_yday + 1; /* tm.YearOfDay is ZeroBased but we are

 OneBased */

 x_IrigTime.ul_Hour = ptm->tm_hour;

 x_IrigTime.ul_Min = ptm->tm_min;

 x_IrigTime.ul_Second = ptm->tm_sec;

 x_IrigTime.ul_MilliSec = 0;

 x_IrigTime.ul_MicroSec = 0;

 if (FDX_OK != (FdxCmdIrigTimeControl(g_ulBoardHandle, FDX_IRIG_WRITE, &x_IrigTime,

 &ul_Mode)))

 {

 printf("IRIG sync failure!!!\n");

 }

 else

 {

 printf("IRIG sync successful\n");

 }

 }

 }

 }

//--

Using FdxCmdIrigTimeControl, the Board

internal IRIG time can be synchronized to

any time required by your application, in

this case it is synched to the local PC time.

Note: An external IRIG source can be used.

In that case, initializing the internal IRIG

time would not be applicable.

The third local function (called by the main program)

demonstrates Port-level Transmitter and Receiver

initialization:

The user must also assign a PortMap ID to each Tx/Rx

port. This Port Map ID is a virtual ID assigned to the

physical Port.

(a) Using multiple AFDX cards

(b) Using receive ports in redundant mode

Using FdxCmdBoardControl,

each port is configured as a single

port and the network bit rate is set

to the default 100 Mbps.

Verification mode is set to default

which means the firmware will

determine the program-specific

board in use and setup the

verification register accordingly.

ARINC664 / AFDX Programmer’s Guide 129

// MyFdxResetPort

//--

void MyFdxResetPort()

{

 TY_FDX_PORT_INIT_IN x_PortInitIn;

 TY_FDX_PORT_INIT_OUT x_PortInitOut;

 if (g_ulPort1Handle > 0)

 {

 x_PortInitIn.ul_PortMap = 1;

 if (FDX_OK != (FdxCmdTxPortInit(g_ulPort1Handle, &x_PortInitIn, &x_PortInitOut)))

 {

 printf("Port 1 Reset failure!!!\n");

 }

 else

 {

 printf("Port 1 Transmitter Initialized\n");

 }

 }

 if (g_ulPort2Handle > 0)

 {

 x_PortInitIn.ul_PortMap = 2;

 if (FDX_ERR == FdxCmdRxPortInit(g_ulPort2Handle, &x_PortInitIn, &x_PortInitOut))

 {

 printf("Port 2 Reset failure!!!\n");

 }

 else

 {

 printf("Port 2 Receiver Initialized\n");

 }

 }

}

//--

// MyFdxSetupTxPort

//--

void MyFdxSetupTxPort()

{

 TY_FDX_TX_MODE_CTRL x_TxModeCtrl;

 TY_FDX_TRANSMIT_VL x_TxVL;

 TY_FDX_UDP_DESCRIPTION x_UdpDesc;

 AiUInt32 ul_BytesWritten;

 AiUInt32 uiBufLen;

 char Buf[512];

The initailized state after

FdxCmdTxPortInit is performed

includes:

(1) No Transmit Queues defined

(2) No VL created, No UPD Ports

created

(3) FdxCmdTxControl command

has no effect

The initailized state after

FdxCmdRxPortInit is performed

includes:

(1) Global Statistics available

(2) All Virtual Links, enabled for

Activity information

(3) Chronological Receive Mode,

No VLs enabled for capturing

(4) No Trigger Control Block

Processing Enabled

This local function is called by the main program. Now

that the board and ports have been initialized we can

setup Port 1 to transmit data as follows:

(1) Individual / UDP Port-Oriented Transmit Mode

(1) Define the VL & Sub VL characteristics

(2) Write UDP port messages created toTx port

Two Sampling ports are setup to transmit data every

100 milliseconds.

Individual/UDP-Port Oriented mode - this mode simulates the AFDX Comm

Ports (defined by ARINC-653) including:

Queuing Ports - AFDX messages are sent over several AFDX frames

(fragmentation by IP layer), no data is lost or overwritten.

Sampling Ports - AFDX messages are sent in 1 frame, data may be lost or

overwritten.

The end-systems, VLs, and partitions are represented by the IP-Addresses and

communication-end points are described by the UDP-Port.

ARINC664 / AFDX Programmer’s Guide 130

 //--- mode control -> individual/UDP-Port oriented

 x_TxModeCtrl.ul_TransmitMode = FDX_TX_INDIVIDUAL;

 if (FDX_OK != (FdxCmdTxModeControl(g_ulPort1Handle, &x_TxModeCtrl)))

 {

 printf("Port 1 Mode Control Failure!!!\n");

 }

 else

 {

 printf("Port 1 set to individual/UDP-oriented Transmit mode\n");

 }

 //--- create vl, define communication parameters for VL 60 or Port 1

 x_TxVL.ul_Bag = DEF_BAG; //Bag

 x_TxVL.ul_MACSourceLSLW = DEF_SRC_MAC_LSLW; //MAC Source

 x_TxVL.ul_MACSourceMSLW = DEF_SRC_MAC_MSLW; //MAC Source

 x_TxVL.ul_MaxFrameLength= DEF_FRAME_MAXLENGTH;//Maximum Frame Length

 x_TxVL.ul_SubVls = DEF_SUB_VLCNT; // # of Sub VLs

 x_TxVL.ul_VlId = DEF_VL; // VL

 x_TxVL.ul_FrameBufferSize = 0;

 if (FDX_OK != (FdxCmdTxCreateVL(g_ulPort1Handle, &x_TxVL)))

 {

 printf("VL Creation on Port 1 failed!!!\n");

 }

 else

 {

 printf("VL 60 Created on Port 1\n");

 }

 //--- create udp-port 1 for write on Port 1

 x_UdpDesc.ul_PortType = FDX_UDP_SAMPLING;

 x_UdpDesc.x_Quint.ul_IpDst = DEF_DST_IP;

 x_UdpDesc.x_Quint.ul_IpSrc = DEF_SRC_IP;

 x_UdpDesc.x_Quint.ul_UdpDst = DEF_DST_UDP1;

 x_UdpDesc.x_Quint.ul_UdpSrc = DEF_SRC_UDP1;

 x_UdpDesc.x_Quint.ul_VlId = DEF_VL;

 x_UdpDesc.ul_SubVlId = DEF_SUB_VLID1;

 x_UdpDesc.ul_UdpNumBufMessages= 1; // 0=default

 x_UdpDesc.ul_UdpMaxMessageSize= DEF_UDP_MAXMSG;

 x_UdpDesc.ul_UdpSamplingRate = DEF_UDP_SAMPLING_RATE;

 if (FDX_OK != (FdxCmdTxUDPCreatePort(g_ulPort1Handle, &x_UdpDesc, &g_pUdp1Port1Handle)))

 {

After setting up the mode, you then need to define the characteristics of the VL.

VL-Definitions are identified by the VL-ID. The MAC address, BAG and the

maximum frame length are properties of the VL-Definition. The VL-Definition is

the "parent" of a set of up to 4 S/Q-Ports (identified by Sub VL ID (1-4)). So if the

VL-Definition is disabled/deleted all S/Q-Ports of this VL are disabled/deleted.

After setting up the VL, you then need to define the characteristics of the Sub VLS (individual S/Q port).

There can be up to 4 S/Q Ports per VL ID.

SubVL-Definitions are identified by the Sub VL-ID. The address-quintuplet (UDP, IP, VL ID) message

size and the sampling rate length are properties of the Sub VL-Definition.

This Sub VL is defined as follows:

- Sub VL ID = 1

- Sampling Port

- number of messages = 1 (for sampling port

 always equal to one.)

- sampling rate = 100 milliseconds

- DEF_SRC_IP (0x0a012101)

- DEF_DST_IP (0xe0e0003c)

- DEF_SRC_UDP1 (24)

- DEF_DST_UDP1 (23)

Thr VL ID defined for

Port 1 is 60 with two Sub

VLs.

ARINC664 / AFDX Programmer’s Guide 131

 printf("UDP Port Creation Failure on Port 1!!!\n");

 }

 else

 {

 printf("Tx UDP Port Created on Port 1 -- VL:%d UDP Port:%d\n", DEF_VL, DEF_SRC_UDP1);

 }

//--- create udp-port 2 for write on Port 1

 x_UdpDesc.ul_PortType = FDX_UDP_SAMPLING;

 x_UdpDesc.x_Quint.ul_IpDst = DEF_DST_IP;

 x_UdpDesc.x_Quint.ul_IpSrc = DEF_SRC_IP;

 x_UdpDesc.x_Quint.ul_UdpDst = DEF_DST_UDP2;

 x_UdpDesc.x_Quint.ul_UdpSrc = DEF_SRC_UDP2;

 x_UdpDesc.x_Quint.ul_VlId = DEF_VL;

 x_UdpDesc.ul_SubVlId = DEF_SUB_VLID2;

 x_UdpDesc.ul_UdpNumBufMessages= 1; // 0=default

 x_UdpDesc.ul_UdpMaxMessageSize= DEF_UDP_MAXMSG;

 x_UdpDesc.ul_UdpSamplingRate = DEF_UDP_SAMPLING_RATE;

 if (FDX_OK != (FdxCmdTxUDPCreatePort(g_ulPort1Handle, &x_UdpDesc, &g_pUdp2Port1Handle)))

 {

 printf("UDP Port Creation Failure on Port 1!!!\n");

 }

 else

 {

 printf("Tx UDP Port Created on Port 1 -- VL:%d UDP Port:%d\n", DEF_VL, DEF_SRC_UDP2);

 }

 //Write message to UDP Tx Port

 if (g_pUdp1Port1Handle != NULL) {

 sprintf(Buf, "Testing UDP Port");

 uiBufLen = (AiUInt32)strlen(Buf);

 if (FDX_OK != (FdxCmdTxUDPWrite(g_ulPort1Handle, g_pUdp1Port1Handle, uiBufLen,

 (const void *) Buf, &ul_BytesWritten))) {

 printf("UDP Transmit Port Write failure!!!\n");

 }

 else {

 printf("%d bytes written to UDP Port -- VL:%d UPD Port:%d\n", ul_BytesWritten,

 DEF_VL, DEF_SRC_UDP1);

 }

 }

 //Write message to UDP Tx Port

 if (g_pUdp2Port1Handle != NULL) {

 sprintf(Buf, "Testing UDP Port");

 uiBufLen = (AiUInt32)strlen(Buf);

 if (FDX_OK != (FdxCmdTxUDPWrite(g_ulPort1Handle, g_pUdp2Port1Handle, uiBufLen, (const void

*) Buf, &ul_BytesWritten))) {

 printf("UDP Transmit Port Write failure!!!\n");

 }

 else {

 printf("%d bytes written to UDP Port -- VL:%d UDP Port:%d\n", ul_BytesWritten, DEF_VL,

 DEF_SRC_UDP2);

 }

 }

}

//--

// MyFdxSetupRxPort

//--

void MyFdxSetupRxPort()

{

 TY_FDX_RX_MODE_CTRL_IN x_ModeCtrlIn;

 TY_FDX_RX_MODE_CTRL_OUT x_ModeCtrlOut;

This Sub VL is defined as follows:

- Sub VL ID = 2

- Sampling Port

- number of messages = 1 (for sampling port

- always equal to one.)

- sampling rate = 100 milliseconds

- DEF_SRC_IP (0x0a012101)

- DEF_DST_IP (0xe0e0003c)

- DEF_SRC_UDP2 (33)

- DEF_DST_UDP2 (34)

Now write UDP port 1 message created above

to port1.

Now write UDP port 2 message created above

to port1.

This local function (called by the main program) will

configure the Receive Port to capture the data

transmitted by Port1. (Assuming the appropriate

ethernet connection has been configured between ports 1

and 2). Port 2 will be setup as follows:

(1) VL-Oriented Receive Mode

(2) Continuous Capture

(3) Create monitor queue to receive the captured data.

ARINC664 / AFDX Programmer’s Guide 132

 TY_FDX_RX_VL_CTRL x_VLControl;

 TY_FDX_RX_VL_DESCRIPTION x_VLDesc;

 TY_FDX_UDP_DESCRIPTION x_UdpDesc;

 // initialize structures

 memset(&x_VLControl,0,sizeof(TY_FDX_RX_VL_CTRL));

 memset(&x_VLDesc,0,sizeof(TY_FDX_RX_VL_DESCRIPTION));

 //--- mode control -> select VL-Oriented receive

 x_ModeCtrlIn.ul_ReceiveMode = FDX_RX_VL;

 if (FDX_OK != (FdxCmdRxModeControl(g_ulPort2Handle, &x_ModeCtrlIn, &x_ModeCtrlOut))) {

 printf("Port 2 Mode Control Failure!!!\n");

 }

 else {

 printf("Port 2 set to VL/UDP-oriented Receive mode\n");

 }

ARINC664 / AFDX Programmer’s Guide 133

 //--- VL control (per VL which we want to watch)

 x_VLControl.ul_VLId = DEF_VL;

 x_VLControl.ul_VLRange = 1;

 x_VLControl.ul_EnableMode = FDX_RX_VL_ENA_EXT;

 x_VLControl.ul_PayloadMode = FDX_PAYLOAD_FULL;

 x_VLControl.ul_TCBIndex = 0;

 x_VLDesc.ul_VerificationMode = FDX_RX_VL_CHECK_DISA;

 x_VLDesc.ul_VLBufSize = 0x8000;

 if (FDX_OK != (FdxCmdRxVLControl(g_ulPort2Handle, &x_VLControl, &x_VLDesc)))

 {

 printf("Receive VL Control Failure!!!\n");

 }

 else

 {

 printf("VL:%d Enabled for Capturing on Port 2\n", DEF_VL);

 }

 //--- create udp-port for read

 x_UdpDesc.ul_PortType = FDX_UDP_SAMPLING;

 x_UdpDesc.x_Quint.ul_IpDst = DEF_DST_IP;

 x_UdpDesc.x_Quint.ul_IpSrc = DEF_SRC_IP;

 x_UdpDesc.x_Quint.ul_UdpDst = DEF_DST_UDP1;

 x_UdpDesc.x_Quint.ul_UdpSrc = DEF_SRC_UDP1;

 x_UdpDesc.x_Quint.ul_VlId = DEF_VL;

 x_UdpDesc.ul_UdpNumBufMessages= 1; // 0=default

 x_UdpDesc.ul_UdpMaxMessageSize= DEF_UDP_MAXMSG;

 if (FDX_OK != FdxCmdRxUDPCreatePort(g_ulPort2Handle, &x_UdpDesc, &g_pUdp1Port2Handle))

 {

 printf("Receive UDP Port Creation Failure!!!n");

 }

 else

 {

 printf("Rx UDP Port Created on Port 2 -- VL:%d UDP Port:%d\n", DEF_VL, DEF_DST_UDP1);

 }

Since we are in VL-Oriented receive mode, we need to tell port 2 what VL

characteristics to look for. These characteristics will be used as a filter, and only

data matching those characteristics will be stored in the VL-Oriented receive

buffer. Filter characteristics include:

- VL ID

- number of VLs affected by these settings (starting with the VL ID above)

This function also defines what type of verification will be performed on the

received frame such as traffic shaping or Sequence number checking. In this

case, verification is disabled.

Now we need to setup the receive UDP port1
- Sampling Port

- address quintuplet:

 - DEF_SRC_IP (0x0a012101)

 - DEF_DST_IP (0xe0e0003c)

 - DEF_SRC_UDP1 (24)

 - DEF_DST_UDP1 (23)

- number of messages = 1 (for sampling port - always equal to one.)

- Max msg size - the fixed size of the sampling message in bytes (size without MAC,IP and UDP)

ARINC664 / AFDX Programmer’s Guide 134

 //--- create udp-port for read

 x_UdpDesc.ul_PortType = FDX_UDP_SAMPLING;

 x_UdpDesc.x_Quint.ul_IpDst = DEF_DST_IP;

 x_UdpDesc.x_Quint.ul_IpSrc = DEF_SRC_IP;

 x_UdpDesc.x_Quint.ul_UdpDst = DEF_DST_UDP2;

 x_UdpDesc.x_Quint.ul_UdpSrc = DEF_SRC_UDP2;

 x_UdpDesc.x_Quint.ul_VlId = DEF_VL;

 x_UdpDesc.ul_UdpNumBufMessages= 1; // 0=default

 x_UdpDesc.ul_UdpMaxMessageSize= DEF_UDP_MAXMSG;

 if (FDX_OK != FdxCmdRxUDPCreatePort(g_ulPort2Handle, &x_UdpDesc, &g_pUdp2Port2Handle)) {

 printf("Receive UDP Port Creation Failure!!!n");

 }

 else{

 printf("Rx UDP Port Created on Port 2 -- VL:%d UDP Port:%d\n", DEF_VL, DEF_DST_UDP2);

 }

}

//--

// MyFdxStartTx

//--

void MyFdxStartTx()

{

 TY_FDX_TX_CTRL x_TxControl;

 x_TxControl.ul_Count = 0;

 x_TxControl.e_StartMode = FDX_START;

 if (g_ulPort1Handle != NULL)

 {

 if (FDX_OK != (FdxCmdTxControl(g_ulPort1Handle, &x_TxControl))) {

 printf("Failure to start transmitter\n");

 }

 else {

 printf("Transmitter started\n");

 }

 }

}

//--

// MyFdxReceive

//--

void MyFdxStartRx()

{

 TY_FDX_RX_CTRL x_RxControl;

 if (g_ulPort2Handle != NULL)

 {

 x_RxControl.ul_StartMode = FDX_START;

 x_RxControl.ul_GlobalStatisticReset = FDX_RX_GS_RES_ALL_CNT;

 if (FDX_OK != (FdxCmdRxControl(g_ulPort2Handle, &x_RxControl))) {

 printf("Failure to start Receiver!!!\n");

 }

 else {

 printf("Receiver Started\n");

 }

 }

}

Now we need to setup the receive UDP port2
- Sampling Port

- address quintuplet:

 - DEF_SRC_IP (0x0a012101)

 - DEF_DST_IP (0xe0e0003c)

 - DEF_SRC_UDP2 (33)

 - DEF_DST_UDP2 (34)

- number of messages = 1 (for sampling port - always equal to one.)

- Max msg size - the fixed size of the sampling message in bytes (size without MAC,IP and UDP)

This local function (called by the main program) will

start the transmission of AFDX frames via Port1. Send

configuration includes:

(1) Send the AFDX frame cyclically (ul_Count = 0)

(2) Setup to start immediately (vs. wait for trigger)

.

This local function (called by the main program) will

start the reception of AFDX frames via Port2. Receive

configuration includes:

(1) Receive start

(2) Reset all counters prior to receive start

.

ARINC664 / AFDX Programmer’s Guide 135

//---

// MyFdxStopTx

//---

void MyFdxStopTx()

{

 TY_FDX_TX_CTRL x_TxControl;

 x_TxControl.ul_Count = 0;

 x_TxControl.e_StartMode = FDX_STOP;

 if (FDX_ERR == FdxCmdTxControl(g_ulPort1Handle, &x_TxControl))

 {

 printf("FdxCmdTxControl Error");

 }

}

//---

// MyFdxStopRx

//---

void MyFdxStopRx()

{

 TY_FDX_RX_CTRL x_RxControl;

 x_RxControl.ul_StartMode = FDX_STOP;

 x_RxControl.ul_GlobalStatisticReset = FDX_RX_GS_RES_ALL_CNT;

 if (FDX_OK != (FdxCmdRxControl(g_ulPort2Handle, &x_RxControl)))

 {

 printf("FdxCmdRxControl Error");

 }

}

//---

// MyFdxGetStatus

//---

void MyFdxGetStatus()

{

 char l_command[10];

 bool l_continue = TRUE;

 TY_FDX_TX_STATUS x_TxStatus;

 TY_FDX_TX_UDP_STATUS x_UdpTxStatus;

 TY_FDX_RX_STATUS x_RxStatus;

 TY_FDX_RX_UDP_STATUS x_UdpRxStatus;

 AiUInt32 ul_Control;

 TY_FDX_RX_GLOB_STAT x_GlobalStatisticA, x_GlobalStatisticB;

 while (l_continue == TRUE)

 {

 printf("\r\n '1' Get Transmitter Status\n");

 printf(" '2' Get Receiver Status\n");

 printf(" 'x' Exit\n");

 printf("Select a Command: ");

 scanf("%s", l_command);

 switch (l_command[0])

 {

 case '1':

 {

 // Retrieve Transmitter Status

 printf("\nTransmitter Status:\n");

 if (FDX_OK != (FdxCmdTxStatus(g_ulPort1Handle, &x_TxStatus)))

 {

 printf("FdxCmdTxStatus Error\n");

 }

This local function (called by MyFdxGetStatus) will stop

the transmission of AFDX frames via Port1.

.

This local function (called by MyFdxGetStatus) will stop

the reception of AFDX frames via Port2.

.

This local function (called from the main program)

allows the user to select the action to be taken by the

program including:

1 - Get Tranmsmitter Status

2 - Get Receiver Status

x - Exit the program

1 - Get Tranmsmitter Status

ARINC664 / AFDX Programmer’s Guide 136

 printf("Port 1 Status: ");

 switch (x_TxStatus.e_Status)

 {

 case FDX_STAT_STOP:

 printf("Stopped\n");

 break;

 case FDX_STAT_RUN:

 printf("Running\n");

 break;

 case FDX_STAT_ERROR:

 printf("Error\n");

 }

 if (FDX_OK != (FdxCmdTxUDPGetStatus(g_ulPort1Handle,

 g_pUdp1Port1Handle, &x_UdpTxStatus)))

 {

 printf("FdxCmdTxUDPGetStatus Error\n");

 }

 printf("UDP Message count(VL:%d UDP Port:%d): %d\n", DEF_VL,

 DEF_SRC_UDP1, x_UdpTxStatus.ul_MsgCount);

 if (FDX_OK != (FdxCmdTxUDPGetStatus(g_ulPort1Handle,

 g_pUdp2Port1Handle, &x_UdpTxStatus)))

 {

 printf("FdxCmdTxUDPGetStatus Error\n");

 }

 printf("UDP Message count(VL:%d UDP Port:%d): %d\n", DEF_VL,

 DEF_SRC_UDP2, x_UdpTxStatus.ul_MsgCount);

 break;

 }

 case '2':

 {

 // Retrieve Receiver Status

 printf("\nReceiver Status:\n");

 if (FDX_OK != (FdxCmdRxStatus(g_ulPort2Handle, &x_RxStatus)))

 {

 printf("FdxCmdRxStatus Error\n");

 }

 printf("Port 2 Status: ");

 switch (x_RxStatus.ul_Status)

 {

 case FDX_STAT_STOP:

 printf("Stopped\n");

 break;

 case FDX_STAT_RUN:

 printf("Running\n");

 break;

 case FDX_STAT_ERROR:

 printf("Error\n");

 break;

 }

 ul_Control = FDX_RX_GS_RES_NO_CNT;

 if (FDX_OK != (FdxCmdRxGlobalStatistics(g_ulPort2Handle,

 ul_Control, &x_GlobalStatisticA, &x_GlobalStatisticB)))

 {

 printf("\nFdxCmdRxGlobalStatistics Error");

 }

 printf("Port 2 Global Statistics:\n");

 printf("Good Frame Count: %d\n",

 x_GlobalStatisticA.ul_FrameGoodCount);

2 - Get Receiver Status

1 - Get UDP Port1 Status

1 - Get UDP Port2 Status

Local function call MyFdxGetVLActivity

will retrieve the frame count for the

number of active virtual links.

ARINC664 / AFDX Programmer’s Guide 137

 printf("Bad Frame Count: %d\n",

 x_GlobalStatisticA.ul_FrameErrorCount);

 //--- Get VL Activity

 MyFdxGetVLActivity();

 //--- Get UDP port Status

 if (FDX_OK != (FdxCmdRxUDPGetStatus(g_ulPort2Handle,

 g_pUdp1Port2Handle, &x_UdpRxStatus)))

 {

 printf("FdxCmdRxUDPGetStatus Error");

 }

 printf("UDP Port 1 Message Count: %d\n", x_UdpRxStatus.ul_MsgCount);

 printf("UDP Port 1 Error Count: %d\n", x_UdpRxStatus.ul_MsgErrorCount);

 //--- Get UDP port Status

 if (FDX_OK != (FdxCmdRxUDPGetStatus(g_ulPort2Handle,

 g_pUdp2Port2Handle, &x_UdpRxStatus)))

 {

 printf("FdxCmdRxUDPGetStatus Error");

 }

 printf("UDP Port 2 Message Count: %d\n", x_UdpRxStatus.ul_MsgCount);

 printf("UDP Port 2 Error Count: %d\n", x_UdpRxStatus.ul_MsgErrorCount);

 break;

 }

 case 'x':

 {

 //Exit Application

 //--- Stop Tx/Rx, logout, and free handles

 MyFdxStopTx();

 MyFdxStopRx();

 MyFdxFreeResources();

 l_continue = FALSE;

 break;

 }

 default:

 ;

 }

 }

}

//---

// MyFdxGetVLActivity

//---

void MyFdxGetVLActivity()

{

 TY_FDX_RX_VL_ACTIVITY_IN x_VLActivityIn;

 TY_FDX_RX_VL_ACTIVITY_OUT x_VLActivityOut;

 TY_FDX_RX_VL_ACTIVITY * px_VLActivity;

 x_VLActivityIn.ul_Mode = FDX_RX_VL_ACT_ALL;

 x_VLActivityIn.ul_MaxReadBytes = 10*sizeof(TY_FDX_RX_VL_ACTIVITY);

 x_VLActivityOut.pax_VLActivity =

 (TY_FDX_RX_VL_ACTIVITY*)malloc(10*sizeof(TY_FDX_RX_VL_ACTIVITY));

 if (FDX_OK != (FdxCmdRxVLGetActivity(g_ulPort2Handle, &x_VLActivityIn,

 &x_VLActivityOut)))

 {

 printf("\nFdxCmdRxVLGetActivity Error");

 }

1 - Get UDP1 Port2 Status

1 - Get UDP2 Port2 Status

x - Exit Program

Resources should be freed before

exit. See the local function

MyFdxFreeResources for

API function calls required.

See the local functions for API

function calls required.

Local function call MyFdxGetVLActivity

will retrieve the frame count for the

number of active virtual links.

ARINC664 / AFDX Programmer’s Guide 138

 printf("Number of Active VLs: %d\n", x_VLActivityOut.ul_NumOfActivVL);

 px_VLActivity = x_VLActivityOut.pax_VLActivity;

 AiUInt32 i;

 for (i=1; (i <= x_VLActivityOut.ul_NumOfActivVL); i++)

 {

 printf("VLid: %d Frame Count: %d\n", px_VLActivity->ul_VLIdent,

 px_VLActivity->ul_FrameCountA);

 px_VLActivity++;

 }

}

ARINC664 / AFDX Programmer’s Guide 139

//--

// MyFdxFreeResources

//--

void MyFdxFreeResources()

{

 if (g_ulBoardHandle != 0)

 {

 if (FDX_ERR == FdxLogout(g_ulBoardHandle))

 {

 printf("FdxLogout Board Error");

 }

 if (g_ulPort1Handle != 0)

 {

 if (g_pUdp1Port1Handle != NULL)

 {

 if (FDX_ERR == FdxCmdTxUDPDestroyPort(g_ulPort1Handle, g_pUdp1Port1Handle))

 {

 printf("FdxCmdTxUDPDestroyPort Error 1");

 }

 }

 if (g_pUdp2Port1Handle != NULL)

 {

 if (FDX_ERR == FdxCmdTxUDPDestroyPort(g_ulPort1Handle, g_pUdp2Port1Handle))

 {

 printf("FdxCmdTxUDPDestroyPort Error 1");

 }

 }

 if (FDX_ERR == FdxLogout(g_ulPort1Handle))

 {

 printf("FdxLogout Error 1");

 }

 }

 if (g_ulPort2Handle != 0)

 {

 if (g_pUdp1Port2Handle != NULL)

 {

 if (FDX_ERR == FdxCmdRxUDPDestroyPort(g_ulPort2Handle, g_pUdp1Port2Handle))

 {

 printf("FdxCmdRxUDPDestroyPort Error 2");

 }

 }

 if (g_pUdp2Port2Handle != NULL)

 {

 if (FDX_ERR == FdxCmdRxUDPDestroyPort(g_ulPort2Handle, g_pUdp2Port2Handle))

 {

 printf("FdxCmdRxUDPDestroyPort Error 2");

 }

 }

 if (FDX_ERR == FdxLogout(g_ulPort2Handle))

 {

 printf("FdxLogout Error 2");

 }

 }

 }

}

This local function is called prior to termination of

the program within the MyFdxGetStatus local

function. this function demonstrates:

(1) Logout of each board/port resource using

FdxLogout and.

(2) Deletion of the UDP ports associated with the

physical port using FdxCmdTxUDPDestroyPort

and FdxCmdRxUDPDestroyPort

ARINC664 / AFDX Programmer’s Guide 140

5.2.2 Generic Transmission/Chronological Monitor Reception Sample

This sample demonstrates how to:

1. Query available resources and login to a local board and two ports.

2. Reset the board and synchronize board-IRIG-time with PC-time.

3. Setup Port 1 for Generic transmit mode i.e., a list of AFDX frames with

additional header information can be sent from a specified queue cyclically or a

specific number of times

 A UDP and IP checksum computation is performed and checksum entered

4. Setup Port 2 to capture using the Chronological Monitor Receive mode i.e., Data

of all enabled links are stored in one large chronological monitor buffer.

5. Port1 sends data to Port2. (an ethernet connection between Port 1 and Port 2 is

required.)

#include "stdafx.h"

#include <time.h>

#include "aifdx_def.h"

//--

// Function-Declarations

//--

bool MyFdxInit();

void MyFdxFreeResources();

void MyFdxResetBoard();

void MyFdxResetPort();

void MyFdxSetupTxPort();

void MyFdxSetupRxPort();

void MyFdxStartTx();

void MyFdxStartRx();

void MyFdxStopTx();

void MyFdxStopRx();

void MyFdxGetStatus();

void MyFdxGetVLActivity();

//--

// Globals

//--

AiUInt32 g_ulBoardHandle = 0;

AiUInt32 g_ulPort1Handle = 0; // acts as Tx

AiUInt32 g_ulPort2Handle = 0; // acts as Rx

AiUInt32 g_ulQueueId = 0;

char g_stop;

aifdx_def.h header file is the only header file

required for inclusion to support the AIM API. It

contains the constant, structure and function

definitions used in the API.

Function defintions used for

functions defined within this

program.

A handle (ID) for the board

and each port on the board

is required.

stfafx.h - MSWindows standard system

include files or project specific

include files that are used

frequently, but are changed

infrequently.

ARINC664 / AFDX Programmer’s Guide 141

//--

// main

//--

int main(int argc, char* argv[])

{

 /*--- init application interface, query resources on local server and login to get valid

 handles */

 printf("\n");

 printf("Performing API initialization and local resource login..\n");

 if (MyFdxInit())

 {

 printf("API initialized, Login successful\n");

 //--- reset

 printf("\nPerforming board-reset and syncronizing IRIG to PC-Time...\n");

 MyFdxResetBoard();

 printf("\nPerforming port-resets...\n");

 MyFdxResetPort();

 printf("Press Any key to continue\n");

 getchar();

 //--- setup

 printf("\nPerforming Tranmitter setup on Port 1...\n");

 MyFdxSetupTxPort();

 printf("\nPerforming Receiver setup on Port 2...\n");

 MyFdxSetupRxPort();

 //--- Start Receiver

 printf("\nPerforming Receiver startup...\n");

 MyFdxStartRx();

 //--- Start Transmitter

 printf("\nPerforming Transmitter startup...\n");

 MyFdxStartTx();

 }

 else

 {

 printf("API Open Failure!!!\n");

 }

 MyFdxGetStatus();

 /* use as last function to free the resource list, the device list and the server list */

 if (FDX_OK != FdxExit())

 printf("\r\n FdxExit() FAIL");

 return 0;

}

The main program provides an overview of the order of any basic application program:

Initialization--->Board setup--->Port Setup--->Frame-Data Setup for Tx--->

Monitor Setup for Rx--->StartTx/Rx

After starting Tx/Rx - MyFdxGetStatus provides user controlled action for:

1. Check Tx Status

2. Check Rx Status

3. Read from Monitor Queue

4. Exit

Each local function contains the API function calls required to perform these capabilities.

ARINC664 / AFDX Programmer’s Guide 142

//--

// MyFdxInit - returns true on success

//--

// Init the application interface and

// gets the global handles to local resources

//--

bool MyFdxInit()

{

 DWORD dwTmp;

 bool bRetSuccess = false;

 bool bFoundLocalServer = false;

 TY_SERVER_LIST * px_ServerNames = NULL;

 TY_SERVER_LIST * px_TmpServer;

 TY_RESOURCE_LIST_ELEMENT * pRLE = NULL;

 TY_RESOURCE_LIST_ELEMENT * pRLEHead = NULL;

 TY_FDX_CLIENT_INFO x_ClientInfo;

 //--- init client-info

 sprintf(x_ClientInfo.ac_ClApplication, "AFDX-Sample Application");

 sprintf(x_ClientInfo.ac_ClApplicationVersion, "1.0");

 dwTmp = MAX_FDX_CLIENT_HOST_NAME;

 ::GetComputerName((LPWSTR)(x_ClientInfo.ac_ClHostName), &dwTmp);

 dwTmp = MAX_FDX_CLIENT_USER_NAME;

 ::GetUserName((LPWSTR)(x_ClientInfo.ac_ClUser), &dwTmp);

 //--- application interface initialize

 // and get a list of available servers

 if (FdxInit(&px_ServerNames) != FDX_OK)

 {

 printf("API Open Failed!!!\n");

 // free the server-list

 if (px_ServerNames != NULL)

 {

 FdxCmdFreeMemory(px_ServerNames, px_ServerNames->ul_StructId);

 }

 return(bRetSuccess);

 }

 // search the server-list for local server

 px_TmpServer = px_ServerNames;

 while ((px_TmpServer != NULL) && (!bFoundLocalServer))

 {

 if (stricmp(px_TmpServer->auc_ServerName, "local") == 0)

 {

 bFoundLocalServer = true;

 }

 else

 {

 px_TmpServer = px_TmpServer->px_Next;

 }

 }

 if (bFoundLocalServer)

 { // ok, we found a local server

 // lets query the configuration of this server

 if (FdxQueryServerConfig("local", &pRLEHead) == FDX_OK)

 {

 pRLE = pRLEHead;

 while (pRLE != NULL)

 { //--- login to resources

 switch(pRLE->ul_ResourceType)

 {

The first local function (called

by the main program) to be

executed performs:

(1) Initialization of the API

(2) Board login

(3) Port(s) login.

GetComputerName/GetUserName are

MSWindows functions that retrieve the

computer name/user name of the current

system. These values are used for the

FdxLogin function.

FdxInit returns the names of available servers at

px_ServerNames. If px_ServerNames = "local", the

AFDX board is located where the API is running. If

px_ServerNames = "NULL", the end of the list has been

reached. Note: this version will only return "local".

If a local server was found then the local

server is searched for available AFDX

boards, using FdxQueryServerConfig.

FdxQueryServerConfig will return a list

of resouces (board and port) available

which will be used as an input for

FdxLogin. The following code assumes

an FDX-2 board configuration, thus

only logging into one board and two

ports.

ARINC664 / AFDX Programmer’s Guide 143

 case RESOURCETYPE_BOARD:

 if (g_ulBoardHandle == 0)

 {

 if (FdxLogin("local", &x_ClientInfo, pRLE->ul_ResourceID, PRIVILEGES_ADMIN,

 &g_ulBoardHandle) != FDX_OK)

 {

 g_ulBoardHandle = 0;

 printf("Board Login Failure!!!\n");

 }

 }

 break;

 case RESOURCETYPE_PORT:

 if (g_ulPort1Handle == 0)

 {

 if (FdxLogin("local", &x_ClientInfo, pRLE->ul_ResourceID, PRIVILEGES_ADMIN,

 &g_ulPort1Handle) != FDX_OK)

 {

 g_ulPort1Handle = 0;

 printf("Port 1 Login Failure!!!\n");

 }

 }

 else

 if (g_ulPort2Handle == 0)

 {

 if (FdxLogin("local",&x_ClientInfo,pRLE->ul_ResourceID, PRIVILEGES_ADMIN,

 &g_ulPort2Handle) != FDX_OK)

 {

 g_ulPort2Handle = 0;

 printf("Port 2 Login Failure!!!\n");

 }

 }

 break;

 }

 pRLE = pRLE->px_Next;

 }

 }

 }

 // free the resource-list

 if (pRLEHead != NULL)

 {

 FdxCmdFreeMemory(pRLEHead, pRLEHead->ul_StructId);

 }

 // free the server-list

 if (px_ServerNames != NULL)

 {

 FdxCmdFreeMemory(px_ServerNames, px_ServerNames->ul_StructId);

 }

 // we define it as success if we have valid handles for all global variables....

 bRetSuccess = (g_ulBoardHandle != 0) && (g_ulPort1Handle != 0) && (g_ulPort2Handle != 0);

 return bRetSuccess;

}

FdxLogin returns the handle for the

board or port resource.

The memory allocated when either

resources were found using

FdxQueryServerConfig, or server was

found using FdxInit, must be released

prior to termination of the program.

ARINC664 / AFDX Programmer’s Guide 144

//--

// MyFdxResetBoard

//--

void MyFdxResetBoard()

{

 int i;

 AiUInt32 ul_Mode;

 time_t loc_time;

 struct tm * ptm;

 TY_FDX_BOARD_CTRL_IN x_BoardCtrlIn;

 TY_FDX_BOARD_CTRL_OUT x_BoardCtrlOut;

 TY_FDX_IRIG_TIME x_IrigTime;

 if (g_ulBoardHandle > 0)

 {

 //--- init input structure

 for (i=0; i<FDX_MAX_BOARD_PORTS; i++)

 {

 x_BoardCtrlIn.aul_PortConfig[i] = FDX_SINGLE;

 x_BoardCtrlIn.aul_ExpertMode[i] = FDX_EXPERT_MODE;

 }

 x_BoardCtrlIn.ul_RxVeriMode = FDX_BOARD_VERIFICATION_TYPE_DEFAULT;

 //--- reset board

 if (FDX_OK != (FdxCmdBoardControl(g_ulBoardHandle, FDX_WRITE, &x_BoardCtrlIn,

 &x_BoardCtrlOut)))

 {

 printf("Board Reset Failure!!!\n");

 }

 else

 {

 printf("Board Initialized\n");

 }

 //--- sync board-internal irigtime-source with PC-time

 loc_time = time(NULL);

 ptm = localtime(&loc_time);

 memset(&x_IrigTime, 0, sizeof(x_IrigTime));

 if (ptm != NULL)

 {

 x_IrigTime.ul_Day = ptm->tm_yday + 1; // tm.YearOfDay is ZeroBased but we are

 OneBased

 x_IrigTime.ul_Hour = ptm->tm_hour;

 x_IrigTime.ul_Min = ptm->tm_min;

 x_IrigTime.ul_Second = ptm->tm_sec;

 if (FDX_OK != (FdxCmdIrigTimeControl(g_ulBoardHandle, FDX_IRIG_WRITE, &x_IrigTime,

 &ul_Mode)))

 {

 printf("IRIG sync failure!!!\n");

 }

 else

 {

 printf("IRIG sync successful\n");

 }

 }

 }

}

The second local function (called by the

main program) demonstrates two System

(Board-level) functions to:

(1) Configure each port as either single or

redundant, and set up the network bit

rate (default, as in this case, is 100

Mbps)

(2) Initialize the internal Board IRIG time.

Using FdxCmdBoardControl, each

port is configured as a single port and

the network bit rate is set to the

default 100 Mbps. Verification mode

is set to default which means the

firmware will determine the program-

specific board in use and setup the

verification register accordingly.

Using FdxCmdIrigTimeControl, the Board

internal IRIG time can be synchronized to

any time required by your application, in

this case it is synched to the local PC time.

Note: An external IRIG source can be used.

In that case, initializing the internal IRIG

time would not be applicable.

ARINC664 / AFDX Programmer’s Guide 145

//--

// MyFdxResetPort

//--

void MyFdxResetPort()

{

 TY_FDX_PORT_INIT_IN x_PortInitIn;

 TY_FDX_PORT_INIT_OUT x_PortInitOut;

 if (g_ulPort1Handle > 0)

 {

 x_PortInitIn.ul_PortMap = 1;

 if (FDX_OK != (FdxCmdTxPortInit(g_ulPort1Handle, &x_PortInitIn, &x_PortInitOut)))

 {

 printf("Port 1 Reset failure!!!\n");

 }

 else

 {

 printf("Port 1 Transmitter Initialized\n");

 }

 }

 if (g_ulPort2Handle > 0)

 {

 x_PortInitIn.ul_PortMap = 2;

 if (FDX_ERR == FdxCmdRxPortInit(g_ulPort2Handle, &x_PortInitIn, &x_PortInitOut))

 {

 printf("Port 2 Reset failure!!!\n");

 }

 else

 {

 printf("Port 2 Receiver Initialized\n");

 }

 }

}

The third local function (called by the main program)

demonstrates Port-level Transmitter and Receiver

initialization:

The user must also assign a PortMap ID to each Tx/Rx

port. This Port Map ID is a virtual ID assigned to the

physical Port. The Receive PortMap ID is contained in

the data read from the monitor queue

(FdxCmdMonQueueRead). The Portmap ID aids in the

identification of the physical port from which the data

came, especially for applications

(a) Using multiple AFDX cards

(b) Using receive ports in redundant mode

The initailized state after

FdxCmdTxPortInit is performed

includes:

(1) No Transmit Queues defined

(2) No VL created, No UPD Ports

created

(3) FdxCmdTxControl command

has no effect

The initailized state after

FdxCmdRxPortInit is performed

includes:

(1) Global Statistics available

(2) All Virtual Links, enabled for

Activity information

(3) Chronological Receive Mode,

No VLs enabled for capturing

(4) No Trigger Control Block

Processing Enabled

ARINC664 / AFDX Programmer’s Guide 146

//--

// MyFdxSetupTxPort

//--

void MyFdxSetupTxPort()

{

 TY_FDX_TX_MODE_CTRL x_TxModeCtrl;

 TY_FDX_TX_QUEUE_SETUP x_TxQueueCreate;

 TY_FDX_TX_QUEUE_INFO x_TxQueueInfo;

 AiUInt8 Dt[100];

 struct my_Frame_tag

 {

 TY_FDX_TX_FRAME_HEADER x_Frame;

 AiUInt8 uc_Data[1000];

 } My_Frame;

 int i;

 //--- mode control -> Set TX port to Generic mode

 x_TxModeCtrl.ul_TransmitMode = FDX_TX_GENERIC;

 if (FDX_OK != (FdxCmdTxModeControl(g_ulPort1Handle, &x_TxModeCtrl)))

 {

 printf("Port 1 Mode Control Failure!!!\n");

 }

 else

 {

 printf("Port 1 set to Generic Transmit mode\n");

 }

 //--- Create Generic Tx Message Queue

 // 0 Creates a queue of default size.

 x_TxQueueCreate.ul_QueueSize = 0;

 if (FDX_OK != (FdxCmdTxQueueCreate(g_ulPort1Handle, &x_TxQueueCreate, &x_TxQueueInfo)))

 {

 printf("Message Queue Creation failure!!!\n");

 }

 else

 {

 printf("Message Queue Created\n");

 }

 //--- Create 2 Frames for the Tx Queue

 My_Frame.x_Frame.uc_FrameType = FDX_TX_FRAME_STD;

 My_Frame.x_Frame.x_FrameAttrib.uw_FrameSize = 64; //bytes (includes CRC)

 My_Frame.x_Frame.x_FrameAttrib.ul_InterFrameGap = 25; // 25=1usec; 1000=40usec;

 My_Frame.x_Frame.x_FrameAttrib.ul_PacketGroupWaitTime = 1000; // 1000=1msec; 0=0usec;

 My_Frame.x_Frame.x_FrameAttrib.uc_PayloadBufferMode = FDX_TX_FRAME_PBM_STD;

 My_Frame.x_Frame.x_FrameAttrib.uc_PayloadGenerationMode = FDX_TX_FRAME_PGM_USER;

 //no payload generation - all frame data defined by the user in this frame entry

 My_Frame.x_Frame.x_FrameAttrib.ul_BufferQueueHandle = 0; //used when payload buffer mode

 is not standard

 My_Frame.x_Frame.x_FrameAttrib.uc_ExternalStrobe = FDX_DIS;

 My_Frame.x_Frame.x_FrameAttrib.uc_PreambleCount = FDX_TX_FRAME_PRE_DEF;

 My_Frame.x_Frame.x_FrameAttrib.ul_Skew = 0; // usec, used only for redundant mode

This local function is called by the main program. Now

that the board and ports have been initialized we can

setup Port 1 to transmit data as follows:

(1) Generic Transmit Mode

(2) Initialize a Transmit queue for data transmission

(3) Define the data to be transmitted in the queues and

the frame attributes including protocol and error

injection

Two AFDX frames are setup for cyclic transmission

Generic mode - in this mode, the user creates a list

of AFDX frames which can be sent cyclically or a

specified number of times.

Memory must be allocated for the storage of the

frames to be transmitted. One queue is used for

one port. If the queue size is zero, the default

queue size will be selected.

TY_FDX_TX-FRAME_ATTRIB is the structure within

TY_FDX_TX_FRAME_HEADER used to define the attributes (non-

data) of the frame. The following frame attributes will be used for

both frames (Frames 1 and 2) written to the transmit queue.

ARINC664 / AFDX Programmer’s Guide 147

 My_Frame.x_Frame.x_FrameAttrib.uc_NetSelect = FDX_TX_FRAME_BOTH; // used only for

 redundant mode

 My_Frame.x_Frame.x_FrameAttrib.uc_FrameStartMode = FDX_TX_FRAME_START_PGWT;

 My_Frame.x_Frame.x_FrameAttrib.ul_PhysErrorInjection = FDX_TX_FRAME_ERR_OFF;

 My_Frame.x_Frame.x_FrameAttrib.uw_SequenceNumberInit = FDX_TX_FRAME_SEQ_INIT_AUTO;

 My_Frame.x_Frame.x_FrameAttrib.uw_SequenceNumberOffset = FDX_TX_FRAME_SEQ_OFFS_AUTO;

 //--- Frame 1 --- VL 60

 for (i = 0 ; i<1000; i++)

 My_Frame.uc_Data[i] = (unsigned char) i;

 //---MAC Dst= 0x03000000003c (VL 60)

 Dt[0]=0x03;Dt[1]=0x00;Dt[2]=0x00;Dt[3]=0x00;Dt[4]=0x00;Dt[5]=0x3c;

 //---MAC Src= 0x020000012120

 Dt[6]=0x02;Dt[7]=0x00;Dt[8]=0x00;Dt[9]=0x01;Dt[10]=0x21;Dt[11]=0x20;

 //---MAC Type/Length

 Dt[12]=0x08;Dt[13]=0x00;

 //---IP Header (Version/IHL, Type of service, Total length, Fragment ID, Time to live,

 // Protocol, Header Checksum)

 Dt[14]=0x45;Dt[15]=0x00;Dt[16]=0x00;Dt[17]=0x2d;Dt[18]=0x00;Dt[19]=0x00;Dt[20]=0x40;

 Dt[21]=0x00;Dt[22]=0x01;Dt[23]=0x11;Dt[24]=0x6d;Dt[25]=0xa2;

 //---IP Source Address 10.001.33.1

 Dt[26]=0x0a;Dt[27]=0x01;Dt[28]=0x21;Dt[29]=0x01;

 //---IP Destination Address 224.224.0.60 (VL 60)

 Dt[30]=0xe0;Dt[31]=0xe0;Dt[32]=0x00;Dt[33]=0x3C;

 //---UDP Source Port = 24

 Dt[34]=0x00;Dt[35]=0x18;

 //---UDP Dest Port = 23

 Dt[36]=0x00;Dt[37]=0x17;

 //---UDP Length = 25

 Dt[38]=0x00;Dt[39]=0x19;

 //---UDP Checksum

 Dt[40]=0x00;Dt[41]=0x00;

 //---AFDX Payload

 Dt[42]=0x41;Dt[43]=0x42;Dt[44]=0x43;Dt[45]=0x44;Dt[46]=0x45;

 Dt[47]=0x46;Dt[48]=0x47;Dt[49]=0x48;Dt[50]=0x49;Dt[51]=0x4a;

 Dt[52]=0x4b;Dt[53]=0x4c;Dt[54]=0x4d;Dt[55]=0x4e;Dt[56]=0x4f;

 Dt[57]=0x50;Dt[58]=0x51;

 for (i = 0 ; i<59; i++)

 My_Frame.uc_Data[i] = (unsigned char) Dt[i];

Now we must insert the data into Frame 1. (The structure of

the data and the fixed data inserted into the frame is defined in

the AFDX End System Detailed Functional Specification.)

First, initialize the each byte of the data buffer with

incrementing ASCII characters, starting from ASCII 0.

Then store the MAC/IP/UDP header and payload data into the

frame. The frame is defined for VL 60.

ARINC664 / AFDX Programmer’s Guide 148

 if (FDX_OK != (FdxCmdTxQueueWrite(g_ulPort1Handle,

 FDX_TX_FRAME_HEADER_GENERIC,1,sizeof(My_Frame),&My_Frame)))

 {

 printf("Write to Queue Failed!!!\n");

 }

 else

 {

 printf("Frame successfully written to Queue\n");

 }

 //--- Frame 2 --- VL 60

 for (i = 0 ; i<1000; i++)

 My_Frame.uc_Data[i] = (unsigned char) i;

 //---MAC Dst= 0x03000000003c (VL 60)

 Dt[0]=0x03;Dt[1]=0x00;Dt[2]=0x00;Dt[3]=0x00;Dt[4]=0x00;Dt[5]=0x3c;

 //---MAC Src= 0x020000012120

 Dt[6]=0x02;Dt[7]=0x00;Dt[8]=0x00;Dt[9]=0x01;Dt[10]=0x21;Dt[11]=0x20;

 //---MAC Type/Length

 Dt[12]=0x08;Dt[13]=0x00;

 //---IP Header (Version, IHL, Type of service, Total length, Fragment ID, Time to live,

 // Protocol, Header Checksum)

 Dt[14]=0x45;Dt[15]=0x00;Dt[16]=0x00;Dt[17]=0x2d;Dt[18]=0x00;Dt[19]=0x00;Dt[20]=0x40;

 Dt[21]=0x00;Dt[22]=0x01;Dt[23]=0x11; Dt[24]=0x6d;Dt[25]=0xa2;

 //---IP Source Address 10.001.33.1

 Dt[26]=0x0a;Dt[27]=0x01;Dt[28]=0x21;Dt[29]=0x01;

 //---IP Destination Address 224.224.0.60 (VL 60)

 Dt[30]=0xe0;Dt[31]=0xe0;Dt[32]=0x00;Dt[33]=0x3c;

 //---UDP Source Port = 34

 Dt[34]=0x00;Dt[35]=0x22;

 //---UDP Dest Port = 33

 Dt[36]=0x00;Dt[37]=0x21;

 //---UDP Length = 25

 Dt[38]=0x00;Dt[39]=0x19;

 //---UDP Checksum

 Dt[40]=0x00;Dt[41]=0x00;

 //---Payload

 Dt[42]=0x41;Dt[43]=0x42;Dt[44]=0x43;Dt[45]=0x44;Dt[46]=0x45;

 Dt[47]=0x46;Dt[48]=0x47;Dt[49]=0x48;Dt[50]=0x49;Dt[51]=0x4a;

 Dt[52]=0x4b;Dt[53]=0x4c;Dt[54]=0x4d;Dt[55]=0x4e;Dt[56]=0x4f;

 Dt[57]=0x50;Dt[58]=0x51;

 for (i = 0 ; i<58; i++)

 My_Frame.uc_Data[i] = (unsigned char) Dt[i];

 if (FDX_OK != (FdxCmdTxQueueWrite(g_ulPort1Handle,

 FDX_TX_FRAME_HEADER_GENERIC,1,sizeof(My_Frame),&My_Frame))) {

 printf("Write to Queue Failed!!!\n");

 }

 else {

 printf("Frame successfully written to Queue\n");

 }

Write the Frame attributes and the Frame1

data to the Transmit Queue.

Now we must insert the data into Frame 2 (also for VL60).

The UDP source and destination ports are different from

Frame 1

First, initialize the each byte of the data buffer with

incrementing ASCII characters, starting from ASCII 0.

Then store the MAC/IP/UDP header and payload data into the

frame.

ARINC664 / AFDX Programmer’s Guide 149

}

ARINC664 / AFDX Programmer’s Guide 150

//--

// MyFdxSetupRxPort

//--

void MyFdxSetupRxPort()

{

 TY_FDX_RX_MODE_CTRL_IN x_ModeCtrlIn;

 TY_FDX_RX_MODE_CTRL_OUT x_ModeCtrlOut;

 TY_FDX_MON_CAP_MODE x_MonCapMode;

 TY_FDX_MON_QUEUE_CTRL_IN x_QueueCtrlIn;

 TY_FDX_MON_QUEUE_CTRL_OUT x_QueueCtrlOut;

 //--- mode control -> select Chrono Mode

 x_ModeCtrlIn.ul_ReceiveMode = FDX_RX_CHRONO;

 x_ModeCtrlIn.ul_DefaultPayloadMode = FDX_PAYLOAD_FULL;

 x_ModeCtrlIn.ul_DefaultCronoMode = FDX_RX_DEFAULT_MON_ENA_ALL;

 x_ModeCtrlIn.ul_GlbMonBufferSize = 0; // if zero, a default value will be used

 if (FDX_OK != (FdxCmdRxModeControl(g_ulPort2Handle, &x_ModeCtrlIn, &x_ModeCtrlOut)))

 {

 printf("Port 2 Mode Control Failure!!!\n");

 }

 else

 {

 printf("Port 2 Set to Chrono Monitor Receive Mode\n");

 printf("Port 2 Global Mon Buffer Size: %d bytes\n",

 x_ModeCtrlOut.ul_GlbMonBufferSize);

 }

 //--- Monitor Capture Control

 x_MonCapMode.ul_CaptureMode = FDX_MON_CONTINUOUS;

 x_MonCapMode.ul_Strobe = FDX_MON_STROBE_DIS; //no strobe will be ouput on capture

 start or stop

 if (FDX_OK != (FdxCmdMonCaptureControl(g_ulPort2Handle, &x_MonCapMode)))

 {

 printf("Chrono Monitor Capture control failure!!!\n");

 }

 else

 {

 printf("Chrono Monitor Capture Mode set to Continuous\n");

 }

 //--- Create Monitor Queue

 x_QueueCtrlIn.ul_QueueControl = FDX_MON_QUEUE_CREATE;

 if (FDX_OK != (FdxCmdMonQueueControl(g_ulPort2Handle, &x_QueueCtrlIn, &x_QueueCtrlOut)))

 {

 printf("Monitor Queue Creation Failure!!!\n");

 }

 else

 {

 printf("Monitor Queue Created\n");

 g_ulQueueId = x_QueueCtrlOut.ul_QueueId;

 }

}

This local function (called by the main program) will

configure the Receive Port to capture the data

transmitted by Port1. (Assuming the appropriate

ethernet connection has been configured between ports 1

and 2). Port 2 will be setup as follows:

(1) Chronological Receive Mode

(2) Continuous Capture

(3) Create monitor queue to receive the captured data.

Chronological Receive Mode - indicates that VL data streams are captured

and stored into one Monitor buffer.(vs. VL-oriented storage)

Default Chronological mode - allows you to capture all VL data,

only the good frames, or only perform statistics without capturing

the frame. In this case, all VLs are captured.

Payload mode - allows you to store the entire frame, or other specific

portions of the frame. In this case, the entire frame is stored.

Continuous Capture mode - indicates the monitor buffer will be filled in a

cyclic manner, such that once full, the oldest frames will be overwritten.

ARINC664 / AFDX Programmer’s Guide 151

//--

// MyFdxStartTx

//--

void MyFdxStartTx()

{

 TY_FDX_TX_CTRL x_TxControl;

 x_TxControl.ul_Count = 2;

 x_TxControl.e_StartMode = FDX_START;

 if (g_ulPort1Handle != NULL)

 {

 if (FDX_OK != (FdxCmdTxControl(g_ulPort1Handle, &x_TxControl)))

 {

 printf("Failure to start transmitter\n");

 }

 else

 {

 printf("Transmitter started\n");

 }

 }

}

//--

// MyFdxReceive

//--

void MyFdxStartRx()

{

 TY_FDX_RX_CTRL x_RxControl;

 if (g_ulPort2Handle != NULL)

 {

 x_RxControl.ul_StartMode = FDX_START;

 x_RxControl.ul_GlobalStatisticReset = FDX_RX_GS_RES_ALL_CNT;

 if (FDX_OK != (FdxCmdRxControl(g_ulPort2Handle, &x_RxControl)))

 {

 printf("Failure to start Receiver!!!\n");

 }

 else

 {

 printf("Receiver Started\n");

 }

 }

}

This local function (called by the main program) will

start the transmission of AFDX frames via Port1. Send

configuration includes:

(1) Send the AFDX frame 2 times

(2) Setup to start immediately (vs. wait for trigger)

.

This local function (called by the main program) will

start the reception of AFDX frames via Port2. Receive

configuration includes:

(1) Receive start

(2) Reset all counters prior to receive start

.

ARINC664 / AFDX Programmer’s Guide 152

//---

// MyFdxStopTx

//---

void MyFdxStopTx()

{

 TY_FDX_TX_CTRL x_TxControl;

 x_TxControl.ul_Count = 0;

 x_TxControl.e_StartMode = FDX_STOP;

 if (FDX_ERR == FdxCmdTxControl(g_ulPort1Handle, &x_TxControl))

 {

 printf("FdxCmdTxControl Error");

 }

}

//---

// MyFdxStopRx

//---

void MyFdxStopRx()

{

 TY_FDX_RX_CTRL x_RxControl;

 x_RxControl.ul_StartMode = FDX_STOP;

 x_RxControl.ul_GlobalStatisticReset = FDX_RX_GS_RES_ALL_CNT;

 if (FDX_OK != (FdxCmdRxControl(g_ulPort2Handle, &x_RxControl)))

 {

 printf("FdxCmdRxControl Error");

 }

}

This local function (called by MyFdxGetStatus) will stop

the transmission of AFDX frames via Port1.

.

This local function (called by MyFdxGetStatus) will stop

the reception of AFDX frames via Port2.

.

ARINC664 / AFDX Programmer’s Guide 153

//---

// MyFdxGetStatus

//---

void MyFdxGetStatus()

{

 char l_command[10];

 bool l_continue = TRUE;

 TY_FDX_TX_STATUS x_TxStatus;

 TY_FDX_RX_STATUS x_RxStatus;

 TY_FDX_E_MON_STATUS e_MonStatus;

 TY_FDX_MON_REC_STATUS x_MonRecStatus;

 AiUInt32 ul_Control;

 TY_FDX_RX_GLOB_STAT x_GlobalStatisticA, x_GlobalStatisticB;

 TY_FDX_MON_QUEUE_READ_IN x_QueueReadIn;

 TY_FDX_MON_QUEUE_READ_OUT x_QueueReadOut;

 AiUInt8 ReadBuffer[2000];

 TY_FDX_FRAME_BUFFER_HEADER* px_FrameBufferHeader;

 while (l_continue == TRUE)

 {

 printf("\r\n '1' Get Transmitter Status\n");

 printf(" '2' Get Receiver Status\n");

 printf(" '3' Read Frame from Monitor Queue\n");

 printf(" 'x' Exit\n");

 printf("Select a Command: ");

 scanf("%s", l_command);

 switch (l_command[0])

 {

 case '1':

 {

 // Retrieve Transmitter Status

 printf("\nTransmitter Status:\n");

 if (FDX_OK != (FdxCmdTxStatus(g_ulPort1Handle, &x_TxStatus)))

 {

 printf("FdxCmdTxStatus Error\n");

 }

 printf("Port 1 Status: ");

 switch (x_TxStatus.e_Status)

 {

 case FDX_STAT_STOP:

 printf("Stopped\n");

 break;

 case FDX_STAT_RUN:

 printf("Running\n");

 break;

 case FDX_STAT_ERROR:

 printf("Error\n");

 }

 printf("Port 1 Frame Count: %d\n", x_TxStatus.ul_Frames);

 break;

 }

 case '2':

 {

 // Retrieve Receiver Status

 printf("\nReceiver Status:\n");

 if (FDX_OK != (FdxCmdRxStatus(g_ulPort2Handle, &x_RxStatus)))

 {

 printf("FdxCmdRxStatus Error\n");

 }

This local function (called from the main program)

allows the user to select the action to be taken by the

program including:

1 - Get Tranmsmitter Status

2 - Get Receiver Status

3 - Read Frame from Monitor Queue

x - Exit the program

1 - Get Tranmsmitter Status

2 - Get Receiver Status

ARINC664 / AFDX Programmer’s Guide 154

 printf("Port 2 Status: ");

 switch (x_RxStatus.ul_Status)

 {

 case FDX_STAT_STOP:

 printf("Stopped\n");

 break;

 case FDX_STAT_RUN:

 printf("Running\n");

 break;

 case FDX_STAT_ERROR:

 printf("Error\n");

 break;

 }

 ul_Control = FDX_RX_GS_RES_NO_CNT;

 if (FDX_OK != (FdxCmdRxGlobalStatistics(g_ulPort2Handle,

 ul_Control, &x_GlobalStatisticA, &x_GlobalStatisticB)))

 {

 printf("\nFdxCmdRxGlobalStatistics Error");

 }

 printf("Port 2 Global Statistics:\n");

 printf("Good Frame Count: %d\n", x_GlobalStatisticA.ul_FrameGoodCount);

 printf("Bad Frame Count: %d\n", x_GlobalStatisticA.ul_FrameErrorCount);

 printf("Total Byte Count on Port: %d\n", x_GlobalStatisticA.ul_TotalByteCount);

 //--- Get VL Activity

 MyFdxGetVLActivity();

 //--- Monitor Status

 if (FDX_OK != (FdxCmdMonGetStatus(g_ulPort2Handle, &e_MonStatus, &x_MonRecStatus)))

 {

 printf("\nFdxCmdMonGetStatus Error");

 }

 printf("Monitor Status: ");

 switch (e_MonStatus)

 {

 case FDX_MON_OFF:

 printf("Not Running\n");

 break;

 case FDX_MON_WAIT_FOR_TRIGGER:

 printf("Waiting for Start Trigger\n");

 break;

 case FDX_MON_TRIGGERED:

 printf("Monitor Triggered, Capturing Frames\n");

 break;

 case FDX_MON_STOPPED:

 printf("Stopped\n");

 break;

 case FDX_MON_FULL:

 printf("Monitor Buffer Full\n");

 }

 break;

 }

 case '3':

 {

 x_QueueReadIn.ul_EntryCount = 1;

 x_QueueReadIn.ul_ReadQualifier = FDX_MON_READ_FULL;

 x_QueueReadIn.ul_MaxReadBytes = sizeof(ReadBuffer);

 x_QueueReadOut.pv_ReadBuffer = ReadBuffer;

 if (FDX_OK != FdxCmdMonQueueRead(g_ulPort2Handle, g_ulQueueId,

 &x_QueueReadIn, &x_QueueReadOut))

 {

3 - Get Monitor Status

Local function call MyFdxGetVLActivity

will retrieve the frame count for the

number of active virtual links.

This function will indicate the status of the monitor.

Status values shown in case structure below.

ARINC664 / AFDX Programmer’s Guide 155

 printf("FdxCmdMonQueueRead Error\n");

 }

 printf("Bytes Read: %d Frames Read: %d\n",x_QueueReadOut.ul_BytesRead,

 x_QueueReadOut.ul_EntryRead);

 printf("VL from MAC Addr: %d\n", ReadBuffer[41]);

 printf("ReadBuffer[78]: %04lx\n", ReadBuffer[78]);

 printf("ReadBuffer[79]: %04lx\n", ReadBuffer[79]);

 px_FrameBufferHeader = (TY_FDX_FRAME_BUFFER_HEADER*) x_QueueReadOut.pv_ReadBuffer;

 printf("VlId: %d\n",px_FrameBufferHeader->x_FrameHeaderInfo.uw_VlId);

 printf("Sequence Num: %d\n",px_FrameBufferHeader->x_FrameHeaderInfo.uc_SequenceNr);

 break;

 }

 case 'x':

 {

 //Exit Application

 //--- Stop Tx/Rx, logout, and free handles

 MyFdxStopTx();

 MyFdxStopRx();

 MyFdxFreeResources();

 l_continue = FALSE;

 break;

 }

 default:

 ;

 }

 }

}

//---

// MyFdxGetVLActivity

//---

void MyFdxGetVLActivity()

{

 TY_FDX_RX_VL_ACTIVITY_IN x_VLActivityIn;

 TY_FDX_RX_VL_ACTIVITY_OUT x_VLActivityOut;

 TY_FDX_RX_VL_ACTIVITY * px_VLActivity;

 x_VLActivityIn.ul_Mode = FDX_RX_VL_ACT_ALL;

 x_VLActivityIn.ul_MaxReadBytes = 10*sizeof(TY_FDX_RX_VL_ACTIVITY);

 x_VLActivityOut.pax_VLActivity =

 (TY_FDX_RX_VL_ACTIVITY*)malloc(10*sizeof(TY_FDX_RX_VL_ACTIVITY));

 if (FDX_OK != (FdxCmdRxVLGetActivity(g_ulPort2Handle, &x_VLActivityIn,

 &x_VLActivityOut)))

 {

 printf("\nFdxCmdRxVLGetActivity Error");

 }

 printf("Number of Active VLs: %d\n", x_VLActivityOut.ul_NumOfActivVL);

 px_VLActivity = x_VLActivityOut.pax_VLActivity;

 AiUInt32 i;

 for (i=1; (i <= x_VLActivityOut.ul_NumOfActivVL); i++)

 {

 printf("VLid:%d Frame Count:%d\n",px_VLActivity->ul_VLIdent,px_VLActivity->ul_FrameCountA);

 px_VLActivity++;

x - Exit Program

Resources should be freed before

exit. See the local function

MyFdxFreeResources for

API function calls required.

Local function call MyFdxGetVLActivity

will retrieve the frmae count for the

number of active virtual links.

See the local functions for API

function calls required.

ARINC664 / AFDX Programmer’s Guide 156

 }

}

ARINC664 / AFDX Programmer’s Guide 157

//--

// MyFdxFreeResources

//--

void MyFdxFreeResources()

{

 TY_FDX_MON_QUEUE_CTRL_IN x_QueueCtrlIn;

 TY_FDX_MON_QUEUE_CTRL_OUT x_QueueCtrlOut;

 if (g_ulBoardHandle != 0)

 if (FDX_ERR == FdxLogout(g_ulBoardHandle))

 {

 printf("FdxLogout Board Error");

 }

 if (g_ulPort1Handle != 0)

 {

 if (FDX_ERR == FdxLogout(g_ulPort1Handle))

 {

 printf("FdxLogout Error 1");

 }

 }

 if (g_ulPort2Handle != 0)

 {

 if (g_ulQueueId != 0)

 {

 x_QueueCtrlIn.ul_QueueControl = FDX_MON_QUEUE_DELETE;

 x_QueueCtrlIn.ul_QueueId = g_ulQueueId;

 if (FDX_ERR == FdxCmdMonQueueControl(g_ulPort2Handle, &x_QueueCtrlIn,

 &x_QueueCtrlOut))

 {

 printf("FdxCmdMonQueueControl Error");

 }

 }

 if (FDX_ERR == FdxLogout(g_ulPort2Handle))

 {

 printf("FdxLogout Error 2");

 }

 }

}

This local function is called prior to

termination of the program within the

MyFdxGetStatus local function. This

function demonstrates:

(1) Logout of each board/port resource

using FdxLogout.

(2) Deletion of the queue(s) associated

with the chronological monitor using

FdxCmdMonQueueControl (Port 2

was setup for chronological monitor.)

ARINC664 / AFDX Programmer’s Guide 159

5.3 API S/W Library Function Calls vs. Program Samples

Table 5-2 provides a list of all the function calls within the API S/W Library and which sample

program contains the function call. This table is useful for searching for program examples of

how a function call is used within a program.

Table 5-2 API S/W Library Function Calls vs. Program Samples

 a
fd

x
_
M

a
in

S
a

m
p

le
.c

p
p

a
fd

x
_
S

y
s
te

m
F

u
n

c
.c

p
p

a
fd

x
_
S

a
m

p
le

U
ti

ls
.c

p
p

a
fd

x
_
L

o
g

In
O

u
t.

c
p

p

a
fd

x
_
G

e
n

e
ri

c
R

X
.c

p
p

a
fd

x
_
G

e
n

e
ri

c
T

X
.c

p
p

a
fd

x
_
G

e
n

R
X

_
C

C
S

E
.c

p

p

a
fd

x
_
G

e
n

T
X

_
E

x
t.

c
p

p

a
fd

x
_
In

te
rr

u
p

tF
u

n
c
.c

p
p

a
fd

x
_
R

e
p

la
y
F

u
n

c
.c

p
p

a
fd

x
_
S

im
u

la
ti

o
n

R
X

.c
p

p

a
fd

x
_
S

im
u

la
ti

o
n

T
X

.c
p

p

a
fd

x
_
U

d
p

R
x
.c

p
p

a
fd

x
_
U

d
p

T
x
.c

p
p

Library Administration
Functions

FdxInit ●

FdxQueryServerConfig ● ●

FdxQueryResource ●

FdxInstallServerConfigCallback

FdxLogin ●

FdxLogout ●

FdxInstIntHandler ●

FdxDelIntHandler ●

FdxExit ●

System Functions

FdxCmdBoardControl ●

FdxCmdIrigTimeControl ● ● ●

FdxCmdStrobeTriggerLine

FdxReadBSPVersion ●

FdxCmdBITETransfer ●

Transmitter Functions

FdxCmdTxPortInit ● ● ● ● ●

FdxCmdTxModeControl ● ● ● ● ●

FdxCmdTxControl ● ● ● ●

FdxCmdTxStatus ● ●

FdxCmdTxTrgLineControl ●

FdxCmdTxStaticRegsControl ●

FdxCmdTxVLControl ●

FdxCmdTxQueueCreate ● ● ●

FdxCmdTxQueueStatus ●

ARINC664 / AFDX Programmer’s Guide 160

 a
fd

x
_
M

a
in

S
a

m
p

le
.c

p
p

a
fd

x
_
S

y
s
te

m
F

u
n

c
.c

p
p

a
fd

x
_
S

a
m

p
le

U
ti

ls
.c

p
p

a
fd

x
_
L

o
g

In
O

u
t.

c
p

p

a
fd

x
_
G

e
n

e
ri

c
R

X
.c

p
p

a
fd

x
_
G

e
n

e
ri

c
T

X
.c

p
p

a
fd

x
_
G

e
n

R
X

_
C

C
S

E
.c

p

p

a
fd

x
_
G

e
n

T
X

_
E

x
t.

c
p

p

a
fd

x
_
In

te
rr

u
p

tF
u

n
c
.c

p
p

a
fd

x
_
R

e
p

la
y
F

u
n

c
.c

p
p

a
fd

x
_
S

im
u

la
ti

o
n

R
X

.c
p

p

a
fd

x
_
S

im
u

la
ti

o
n

T
X

.c
p

p

a
fd

x
_
U

d
p

R
x
.c

p
p

a
fd

x
_
U

d
p

T
x
.c

p
p

FdxCmdTxQueueWrite ● ● ● ●

FdxCmdTxQueueUpdate ●

FdxCmdTxCreateVL ● ● ●

FdxCmdTxCreateHiResVL

FdxCmdTxUDPCreatePort ● ●

FdxCmdTxUDPChgSrcPort

FdxCmdTxUDPDestroyPort ● ●

FdxCmdTxUDPWrite ● ●

FdxCmdTxUDPBlockWrite ●

FdxCmdTxSAPCreatePort ●

FdxCmdTxSAPWrite ●

FdxCmdTxSAPBlockWrite ●

FdxCmdTxUDPGetStatus ● ●

FdxCmdTxUDPControl ●

FdxCmdTxVLWrite ● ●

FdxCmdTxVLWriteEx ●

Receiver Functions

FdxCmdRxPortInit ● ● ● ●

FdxCmdRxModeControl ● ● ● ●

FdxCmdRxControl ● ● ● ● ●

FdxCmdRxStatus ●

FdxCmdRxGlobalStatistics ●

FdxCmdRxVLControl ● ● ● ●

FdxCmdRxVLControlEx ●

FdxCmdRxVLGetActivity ●

FdxCmdRxTrgLineControl

FdxCmdRxUDPCreatePort ● ● ●

FdxCmdRxUDPChgDestPort

FdxCmdRxUDPDestroyPort ● ● ●

FdxCmdRxUDPRead ●

FdxCmdRxUDPBlockRead ● ●

FdxCmdRxUDPControl

FdxCmdRxSAPCreatePort ●

FdxCmdRxSAPWrite

FdxCmdRxSAPBlockWrite

FdxCmdRXUDPGetStatus ● ●

FdxCmdMonCaptureControl ● ●

FdxCmdMonTCBSetup ●

FdxCmdMonTrgWordIni ●

ARINC664 / AFDX Programmer’s Guide 161

 a
fd

x
_
M

a
in

S
a

m
p

le
.c

p
p

a
fd

x
_
S

y
s
te

m
F

u
n

c
.c

p
p

a
fd

x
_
S

a
m

p
le

U
ti

ls
.c

p
p

a
fd

x
_
L

o
g

In
O

u
t.

c
p

p

a
fd

x
_
G

e
n

e
ri

c
R

X
.c

p
p

a
fd

x
_
G

e
n

e
ri

c
T

X
.c

p
p

a
fd

x
_
G

e
n

R
X

_
C

C
S

E
.c

p

p

a
fd

x
_
G

e
n

T
X

_
E

x
t.

c
p

p

a
fd

x
_
In

te
rr

u
p

tF
u

n
c
.c

p
p

a
fd

x
_
R

e
p

la
y
F

u
n

c
.c

p
p

a
fd

x
_
S

im
u

la
ti

o
n

R
X

.c
p

p

a
fd

x
_
S

im
u

la
ti

o
n

T
X

.c
p

p

a
fd

x
_
U

d
p

R
x
.c

p
p

a
fd

x
_
U

d
p

T
x
.c

p
p

FdxCmdMonTrgIndexWordIni ●

FdxCmdMonTrgIndexWordIniVL ●

FdxCmdMonGetStatus ● ●

FdxCmdMonQueueControl ●

FdxCmdMonQueueRead ●

FdxCmdMonQueueSeek

FdxCmdMonQueueTell

FdxCmdMonQueueStatus ● ●

Target Indep Admin Function

FdxCmdFreeMemory ● ● ●

FdxFwIrig2StructIrig ● ● ●

FdxStructIrig2FwIrig

FdxAddIrigStructIrig ● ●

FdxSubIrigStructIrig ● ●

FdxTranslateErrorWord

FdxInitTxFrameHeader

ARINC664 / AFDX Programmer’s Guide 162

THIS PAGE IS INTENTIONALLY LEFT BLANK

ARINC664 / AFDX Programmer’s Guide 163

6 NOTES

6.1 Acronyms and Abbreviations

µsec microseconds

AFDX Avionic Full Duplex Switched Ethernet

API Application Programming Interface

ARINC Aeronautical Radio, Incorporated

ARM Advanced RISC Machine

ASCII American Standard Code for Information Exchange

ASP Application Support Processor

BAG Bandwidth Allocation Gap

BIP Bus Interface Unit Processor

BIT Built IN Test

BIU Bus Interface Unit

BSP Board Support Package

DCT Dynamic Counter Table

E/S End System

FCS Frame Check Sequence

FIFO First in - First out

FS Frame Size

GTM Generic Transmit Mode

GTU Gap Time Unit

I/O Input / Output

IC Integrity Checking

ID Identifier

IFG Inter-frame Gap

IP Internet Protocol

IPP process invalid frames

IRIG B Inter Range Instrumentation Group, Time Code Format Type B

LCA Xilinx Logic Cell Array (Field Programmable Logic)

LSB Least Significant Byte

MAC Medium Access Controller

Mbps Mega bits per second

MCFL Maximum Consecutive Frames Lost

MSB Most Significant Byte

ns Nanoseconds

OIN Open Information Network

OS Operating System

OSI Open System Interconnect

PBI Physical Bus Interface

ARINC664 / AFDX Programmer’s Guide 164

PC Personal Computer.

PCI Peripheral Component Interconnect

PGWT Packet group wait time

PMC PCI Mezzanine Card

RAM Random Access Memory

RISC Reduced Instruction Set Computer.

RM Redundancy Management

RMA Redundancy Management Algorithm

RP(M) Replay Mode

S/Q Sampling & Queuing

SAP Service Access Point

SCB System Control Block

SFD Start Frame Delimiter

SN Sequence Number

STM Simulator Transmit Mode

TAP Test Access Point

TBD To be defined

TCB Monitor Trigger Control Block

TFTP Trivial File Transfer Protocol

TS Traffic Shaping

UDP User Datagram Protocol

VL Virtual Link

VME Versatile Bus Modular European (computer bus)

ARINC664 / AFDX Programmer’s Guide 165

6.2 Definition of Terms

address quintuplet the address of an AFDX Comm port which consists of UDP

Source/Destination, IP Source/Destination, and MAC Destination

address (VL)

Bandwidth

Allocation Gap

The time difference between the start of one frame and the beginning of

the next frame transmitted on the port.

Big Endian a system of memory addressing in which numbers that occupy more than

one byte in memory are stored "big end first" with the uppermost 8 bits at

the lowest address.

Channel Two physical AFDX ports

Driver Command command used by the AIM target s/w to control the FDX device

FLASH page oriented electrical erasable and programmable memory

function a self-contained block of code with a specific purpose that returns a

single value.

Interframe Gap Gap between the end of the preceding frame and the current frame.

interrupt a signal from a device attached to a computer or from a program within

the computer that causes the main program that operates the computer

(the operating system) to stop and figure out what to do next

Jitter The difference between the minimum and maximum time from when a

source node sends a message to when the sink node receives the

message. Jitter is generally a function of the network design and

multiplexing multiple VLs on one port.

Little Endian a system of memory addressing in which numbers that occupy more than

one byte in memory are stored "little end first" with the lowest 8 bits at

the lowest address.

multicast Multicast is communication between a single sender and multiple

receivers on a network.

Packet Group Wait

Time

The time from the transmission start point of the last frame to the start

point of the current frame with a resolution of 1us.

Port One physical AFDX Port

Strobe a strobe is a signal that is generated based on the conditions defined in

the API

Target Refers to the software/communication active on the target device

unicast Unicast is communication between a single sender and a single receiver

over a network.

http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212986,00.html

ARINC664 / AFDX Programmer’s Guide 166

THIS PAGE IS INTENTIONALLY LEFT BLANK

ARINC664 / AFDX Programmer’s Guide 167

7 API S/W LIBRARY INDEX

bandwidth allocation gap (BAG) 134

FdxAddIrigStructIrig 37, 49, 50, 165

FdxCmdBITETransfer 37, 48, 163

FdxCmdBoardControl 37, 43, 46, 48, 61,

132, 148, 163

FdxCmdFreeMemory . 37, 45, 129, 131, 146,

147, 165

FdxCmdIrigTimeControl 37, 49, 50, 132,

148, 163

FdxCmdMonCaptureControl 39, 87, 101,

103, 110, 113, 154, 164

FdxCmdMonGetStatus 39, 88, 117, 158, 165

FdxCmdMonQueueControl 39, 47, 103, 119,

120, 154, 161, 165

FdxCmdMonQueueRead 37, 39, 49, 83, 112,

117, 119, 158, 165

FdxCmdMonQueueSeek 39, 112, 165

FdxCmdMonQueueStatus 39, 112, 165

FdxCmdMonQueueTell 39, 113, 165

FdxCmdMonTCBSetup39, 51, 87, 110, 111,

164

FdxCmdMonTrgIndexIniVL 110

FdxCmdMonTrgIndexWordIni 39, 108, 110,

111, 165

FdxCmdMonTrgIndexWordIniVL... 39, 108,

165

FdxCmdMonTrgWordIni . 39, 108, 110, 111,

164

FdxCmdRxControl . 39, 85, 89, 95, 100, 112,

138, 139, 155, 156, 164

FdxCmdRxCreatePort 95, 96

FdxCmdRxGlobalStatistics 39, 83, 88, 89,

106, 140, 158, 164

FdxCmdRxModeControl 39, 84, 85, 89, 100,

103, 112, 136, 154, 164

FdxCmdRxPortInit . 39, 83, 84, 90, 115, 133,

149, 164

FdxCmdRxSAPBlockRead 39, 98, 99

FdxCmdRxSAPBlockWrite 164

FdxCmdRxSAPCreatePort 39, 93, 98, 164

FdxCmdRxSAPRead 39, 98, 99

FdxCmdRxSAPWrite 164

FdxCmdRxStatus 39, 88, 140, 157, 164

FdxCmdRxTrgLineControl 39, 87, 164

FdxCmdRxUDPBlockRead ... 39, 95, 96, 97,

164

FdxCmdRxUDPChgDestPort 39, 164

FdxCmdRxUDPControl 39, 164

FdxCmdRxUDPCreatePort 39, 92, 93, 95,

137, 138, 164

FdxCmdRxUDPDestroyPort 39, 47, 143,

164

FdxCmdRxUDPGetStatus 88, 97, 99, 141

FdxCmdRXUDPGetStatus 39, 164

FdxCmdRxUDPRead 39, 49, 95, 96, 97, 98,

164

FdxCmdRxVLControl 39, 83, 88, 89, 90, 93,

103, 106, 110, 137, 164

FdxCmdRxVLControlEx 39, 51, 87, 90,

104, 105, 164

FdxCmdRxVLGetActivity 39, 88, 106, 141,

159, 164

FdxCmdStrobeTriggerLine 37

FdxCmdTxControl 38, 58, 60, 67, 69, 71,

72, 80, 138, 139, 155, 156, 163

FdxCmdTxCreateHiResVL .. 38, 62, 63, 164

FdxCmdTxCreatePort 67

FdxCmdTxCreateVL 38, 56, 62, 63, 64, 134,

164

FdxCmdTxModeControl . 38, 56, 57, 62, 72,

79, 134, 150, 163

FdxCmdTxPortInit . 38, 56, 57, 73, 133, 149,

163

FdxCmdTxQueueCreate .. 38, 56, 72, 73, 77,

79, 150, 163

FdxCmdTxQueueStatus .. 38, 61, 78, 80, 163

FdxCmdTxQueueUpdate 38, 164

FdxCmdTxQueueWrite ... 38, 51, 60, 72, 73,

78, 80, 112, 152, 164

FdxCmdTxSAPBlockWrite .. 38, 58, 69, 164

FdxCmdTxSAPCreatePort ... 38, 65, 69, 164

FdxCmdTxSAPWrite 38, 58, 69, 164

ARINC664 / AFDX Programmer’s Guide 168

FdxCmdTxStaticRegsControl 163

FdxCmdTxStaticRegsCtrl 38, 74

FdxCmdTxStatus 38, 61, 139, 157, 163

FdxCmdTxTrgLineControl 60, 163

FdxCmdTxTrgLineCtrl 38

FdxCmdTxUDPBlockWrite ... 38, 58, 66, 67,

164

FdxCmdTxUDPChgSrcPort 38, 71, 164

FdxCmdTxUDPControl ... 38, 58, 68, 69, 71,

164

FdxCmdTxUDPCreatePort 38, 56, 58, 63,

65, 66, 67, 68, 134, 135, 164

FdxCmdTxUDPDestroyPort 38, 47, 68, 143,

164

FdxCmdTxUDPGetStatus 38, 61, 68, 71,

140, 164

FdxCmdTxUDPWrite 38, 58, 66, 67, 68,

135, 164

FdxCmdTxVLControl 38, 58, 69, 71, 163

FdxCmdTxVLWrite 38, 63, 68, 164

FdxCmdTxVLWriteEx 38, 63, 68, 164

FdxDelIntHandler 36, 51, 52, 163

FdxExit 36, 47, 145

FdxFwIrig2StructIrig 37, 49, 97, 165

FdxInit................... 36, 42, 44, 129, 146, 163

FdxInitTxFrameHeader 37, 165

FdxInstallServerConfigCallback 36

FdxInstIntHandler 36, 51, 163

FdxLogin......... 36, 43, 45, 57, 131, 147, 163

FdxLogout. 36, 44, 46, 47, 52, 143, 161, 163

FdxProcessMonQueue 37

FdxQueryResource 36, 48, 163

FdxQueryServerConfig 36, 42, 43, 44, 45,

129, 146, 163

FdxReadBSPVersion 37, 48, 163

FdxStructIrig2FwIrig 37, 49, 165

FdxSubIrigStructIrig 37, 49, 165

FdxTranslateErrorWord 37, 165

frame-duration .. 76

GNetTranslateErrorWord 37

IP 133

Queuing Ports .. 133

Sampling Ports 133

UDP .. 133

	1 Introduction
	1.1 General
	1.2 How This Programmer's Guide is Organized
	1.3 Conventions Used
	1.3.1 General Documentation Conventions
	1.3.2 Parameter Naming Conventions

	1.4 AIM Document Family

	2 AFDX Network Overview
	2.1 AFDX Network Structure
	2.2 AFDX Protocol Stack
	2.3 AFDX Frame Format

	3 AFDX Overview
	3.1 AFDX Functional Overview
	3.1.1 AFDX Traffic Generation
	3.1.2 AFDX Receive / Monitor Operation

	3.2 AFDX Software Overview
	3.2.1 AFDX Software Architecture
	3.2.2 AFDX Board Support Package
	3.2.3 Creating a New Microsoft Visual C/C++ Application Program
	3.2.3.1 Header File Defines for New Application Programs
	3.2.3.2 Creating and Compiling Your Application Program

	4 Programming using the api library
	4.1 Library Administration and System Programming
	4.1.1 Initialization, Login, and Board Setup
	4.1.2 Getting AIM Board Status and Configuration Information
	4.1.3 Utilizing IRIG-B
	4.1.4 Interrupt Handling

	4.2 Transmitter Programming
	4.2.1 Global Transmitter Functions
	4.2.1.1 Port Initialization and Tx Mode Setup
	4.2.1.2 Transmission Control
	4.2.1.3 Trigger Input/Output Usage
	4.2.1.4 Global Transmit Status

	4.2.2 UDP Port-Oriented Simulation Mode
	4.2.2.1 Creating the Virtual Link and Sub VL
	4.2.2.2 Writing Messages to the Port
	4.2.2.3 Writing Messages to the AFDX Comm Port
	4.2.2.4 Writing Messages to the SAP Port
	4.2.2.5 Individual UDP Port Error Injection, Skew and Enable/Disable
	4.2.2.6 Individual UDP Port Status
	4.2.2.7 Changing the Source ID of a UDP Port

	4.2.3 Generic Transmit Mode
	4.2.3.1 Allocating a Transmit Queue
	4.2.3.2 Defining the Frames / Writing to the Transmit Queue
	4.2.3.3 Generic Transmit Queue Status

	4.2.4 Replay Transmit Mode
	4.2.4.1 Allocating a Transmit Queue
	4.2.4.2 Writing a Replay File to the Transmit Queue
	4.2.4.3 Replay Transmit Queue Status

	4.3 Receiver Programming
	4.3.1 Global Receiver Functions
	4.3.1.1 Port Initialization and Rx Mode Setup
	4.3.1.2 Reception Control
	4.3.1.3 Trigger Input/Output Usage
	4.3.1.4 Global Receiver Status

	4.3.2 VL-Oriented Receive Mode
	4.3.2.1 Defining the Virtual Link and UDP Port to be Monitored/Captured
	4.3.2.2 Reading Messages from the Port
	4.3.2.3 Reading Messages from the AFDX Comm Port
	4.3.2.4 Reading Messages from the SAP Port
	4.3.2.5 Individual UDP Port Status

	4.3.3 Chronological Monitor Receive Mode
	4.3.3.1 Defining the Capture Mode
	4.3.3.2 Allocating the Monitor Queue
	4.3.3.3 Additional VL Filter Capability
	4.3.3.4 Creating Trigger Conditions
	4.3.3.5 Reading the Captured Data

	5 Program SampleS
	5.1 Program Samples Overview
	5.2 Program Sample Code
	5.2.1 UDP-Port Oriented Transmission/VL-Oriented Monitor Storage
	5.2.2 Generic Transmission/Chronological Monitor Reception Sample

	5.3 API S/W Library Function Calls vs. Program Samples

	6 NOTES
	6.1 Acronyms and Abbreviations
	6.2 Definition of Terms

	7 Api S/W Library Index

