il
Al

RIGHT ON TARGET

ARINC664 / AFDX .

C/C++ based Application
Programming Interface

Programmer's

Guide

V19.0.x Rev. A
February 2021

www.aim-online.com

TTTTTTTTTTTTT

ARINCG664 / AFDX

C/C++ based Application
Programming Interface

Programmer's
Guide

V19.0.x Rev. A
February 2021

AIM NO.
60-15900-37-19.0.X

ARINC664 / AFDX Programmer’s Guide I

7~y
AM

RIGHT ON TARGET

AIM — Gesellschaft fur angewandte Informatik und Mikroelektronik mbH

AIM GmbH

Sasbacher Str. 2

D-79111 Freiburg / Germany
Phone +49 (0)761 4 52 29-0
Fax +49 (0)761 4 52 29-33
sales@aim-online.com

AIM UK Office

Cressex Enterprise Centre, Lincoln Rd.
High Wycombe, Bucks. HP12 3RB / UK
Phone +44 (0)1494-446844

Fax +44 (0)1494-449324
salesuk@aim-online.com

© AIM GmbH 2021

AIM GmbH = Munich Sales Office
Terofalstr. 23a

D-80689 Munchen / Germany
Phone +49 (0)89 70 92 92-92

Fax +49 (0)89 70 92 92-94
salesgermany@aim-online.com

AIMUSA LLC

Seven Neshaminy Interplex
Suite 211 Trevose, PA 19053
Phone 267-982-2600

Fax 215-645-1580
salesusa@aim-online.com

Notice: The information that is provided in this document is believed to be accurate.
No responsibility is assumed by AIM GmbH for its use. No license or rights are
granted by implication in connection therewith. Specifications are subject to change

without notice.

ARINC664 / AFDX Programmer’s Guide

mailto:sales@aim-online.com
mailto:salesuk@aim-online.com
mailto:salesgermany@aim-online.com
mailto:salesusa@aim-online.com

7~y
AM

RIGHT ON TARGET

THIS PAGE IS INTENTIONALLY LEFT BLANK

ARINC664 / AFDX Programmer’s Guide iv

7~y
AM

Section Title

Page

I 111 700 [od £ o] o USSR PSRRI 1
1.1 GBINETAL ...ttt bbb 1
1.2 How This Programmer's Guide is Organized...........ccccoeerenininieiiieieneneseseseses 1
1.3 CONVENTIONS USBU.....c.eiiiiiiiiieiiiieieie ettt sttt b e nneas 3
131 General Documentation CONVENTIONSeiverieiieiienieseeseese e see e ssee e 3
1.3.2 Parameter Naming CONVENTIONScoviveiieieiie e se e 3
1.4 AIM DoCUMENT FAMITY ..o 5
2 AFDX NEtWOIrK OVEIVIBWoiviiiiiiiiiieieiie sttt sttt s et sttt sre s eneenees 7
2.1 AFDX NEtWOIrK STIUCTUIE ...ttt 8
2.2 AFDX ProtoCOl STACK.......ccveiiiieiieie et 13
2.3 AFDX Frame FOMMALocooiiiiieiie e 15
3 AFDX OVEIVIBW ...ttt sttt te e te e steesteaseesteenteaseesaeeseeneesseenseaneesseeseenseaneenseans 19
3.1 AFDX FUNCLIONAI OVEIVIEW ..ottt 21
311 AFDX TraffiC GENEratioNccccuviieiieie et 21
3.1.2 AFDX Receive / Monitor Operation..........c.ccceeceivieieeiesieseese e s s 23
3.2 AFDX SOTtWAre OVEIVIEWevieiieieeiiesieeie e siee e eseestee e eneesreeste e sneesseeneesneenees 26
3.2.1 AFDX SOftware ArChiteCUEcoiiiiiieieieie e 26
3.2.2 AFDX Board SUpPOrt PaCkagecccvvviirieiiieii s 29
3.2.3 Creating a New Microsoft Visual C/C++ Application Program........................ 30
4 Programming using the api lBrary ..., 35
4.1 Library Administration and System Programmingcccceoevvereneiencnenencnnns 42
4.1.1 Initialization, Login, and Board SEtUP.........cccveveiieiiciccie e 42
41.2 Getting AIM Board Status and Configuration Information.............cc.cceeeveneee. 48
4.1.3 ULHHZING IRIG-B ..o s 49
414 INterrupt HandliNg.......ccooiiie e 50
4.2 Transmitter Programmingc.eooveoieeiiieeiie et 54
4.2.1 Global Transmitter FUNCHIONSccooviiiiiiee e 56
4.2.2 UDP Port-Oriented Simulation MOGE.ccoeiieiiiiiniee e 62
4.2.3 Generic TranSMIt IMOTEccvv e 72
4.2.4 Replay TransSmit MOEcoviiiiiiic e 79
4.3 RECEIVET ProgrammMiNgccoeiiiierieiiesiisiesie ettt 81
43.1 Global Receiver FUNCHIONS.uoiiiiiiie e 83
4.3.2 VL-Oriented RECEIVE IMOE.........c.coueiieieiie e 89
4.3.3 Chronological Monitor Receive MOEcceovieiiiiiiiiie e 100
5 Program SAMPIES ... e 119
51 Program Samples OVEIVIEWccveiiiiiie ittt 120
5.2 Program Sample COOE.........ccvoiiiieiee e 122
521 UDP-Port Oriented Transmission/VVL-Oriented Monitor Storage................... 122
522 Generic Transmission/Chronological Monitor Reception Sample.................. 140
5.3 API S/W Library Function Calls vs. Program Samples........cccccovevininnieneennnnn 159

ARINC664 / AFDX Programmer’s Guide v

7~y
AM

RIGHT ON TARGET

B N O T ES .. et ettt et e e e aaaaaas 163
6.1 Acronyms and ABDIeVIATIONScciiiiiiiiieee e 163
6.2 D INIEION OF T MNS ..ttt e e e e e e e e e e eeeeeeaaans 165
T APIS/W LIBRARY INDEX ... 167

ARINC664 / AFDX Programmer’s Guide vi

7~y
AM

Figure Title Page
Figure 2-1 AFDX NetWork TOPOIOGY.......cciiiiiieiiieieie e 8
Figure 2-2 Virtual LinK SCENAIIOcoviiiiiiee et 9
Figure 2-3 Bandwidth Allocation Gap (BAG) ... 10
Figure 2-4 Maximum Jitter WINAOW..........cccueiieiiiie et 10
Figure 2-5 Sub-VL Round Robin SCheduling..........cccooiiiiiiiiiiiiieceec e 11
Figure 2-6 Redundancy Managementc.cceeieiieeieerie e et sreesre e sre e 12
Figure 2-7 Redundancy Management & Integrity Checking on a Receive End-System...... 12
Figure 2-8 AFDX ProtoCol STaCK.........ccvcvuiiiiiiiie e 13
Figure 2-9 AFDXComm and SAP UDP POITS.......ccooiiiiiiiiirieiieee e 14
Figure 2-10 AFDX Frame SIIUCIUIEcveiieieeie ettt s sre e 15
FIQUIE 2-11 MAC HEAUBK ...ttt 16
1o U N | o T Vo T PSS 17
FIQUIE 2-13 UDP HEAUBTeeiiiiiieieiteite ettt 18
Figure 2-14 AFDX Payload and Sequence NUMDESc.ccoveviiieiieiicccece e 18
Figure 3-1 FDX Bus Interface Card Application SCENArioscccoeverererenesisieeeienes 20
Figure 3-2 Host/Target Software Interface Diagramccccccveveiieviicccie e 27
Figure 3-3 DLL and Program INtErfaceScooeieiiieneie e 28
Figure 3-4 API S/W Library Header FilesSccooveiiiiiieiecce e 30
Figure 4-1 Basic Application Program STIUCLUIEcccooiriiiriiieieie e 40
Figure 4-2 INtErrupt SELUP PrOCESS......ccuveiiiiieiieciecie sttt sre e sre e ens 53
Figure 4-4 Redundant Network Frame Transmission OPtioNnscccccovevereneninineieeiennn. 70
Figure 4-5 Packet Group Wait Time & Interframe Gapcccceevvevieveiiciieseece e 76
Figure 4-6 AFDX Comm Port Message Buffer Layout..........c.cooviriieiinineninceeeee 96
Figure 4-7 SAP Port Message Buffer Layoutccccovieiieieiic e 98
Figure 4-8 TCB EValuation PrOCESS.cccuiiiiiiiiiieiesie sttt 109
FIQure 4-10 Capture StAtES.......ciiiieiiecirie ittt ettt e e re e e e beearee s 115
Figure 5-1 afdx_Sample.exe USer INTErfaCe.........ccovieieriiiiiiieicieiee e 121

ARINC664 / AFDX Programmer’s Guide vii

7~y
AM

Table Title Page
Table 1-1 API S/W Library Data Type Naming CONVENTIONScccooerverinenenenisieeeienes 4
Table 3-1 Transmission Mode Key FEALUIEScccviieiieieciecee e 22
Table 3-2 Reception Mode Key FEALUIES.ccueiiiiieieiesie s 24
Table 3-3 Compatible Operating Systems / COMPIErS........ccocoveiieiieie i 26
Table 4-1 Library Administration FUNCLIONScccooiiiiiiiiiiceee e, 36
Table 4-2 Target Independent Administration FUNCLIONSccccveveiiiveeie e, 37
Table 4-3 SYSTEM FUNCLIONSooiiiiiiieicice e 37
Table 4-4 TranSMItter FUNCHIONSoouviiiiiiiieieeie e 38
Table 4-5 RECEIVEr FUNCHIONSocvviiiiieiie ettt ae e nneas 39
Table 4-6 Available Interrupt Types and Related Function Callc..ccooeiveiieieiiennnn, 51
Table 4-7 Trigger Input/Output Transmitter FUNCIONScccovviiriinrieiieie e 60
Table 4-8 Physical Error INJECHIONccveiieiiciccecce e 70
Table 4-9 Frame Attributes for Generic TranSmit Frames.........c.ccocvvevviiirrveriesieeseenesie e 74
Table 4-10 Payload Generation Mode Frame Content SOUICEccccevvevveveeiieseeie s, 75
Table 4-11 Errors Replayable/Not Replayable ..., 79
Table 4-14 Trigger Input/Output receiver FUNCHIONScccvceiiiiiee e 86
Table 4-15 Global RECEIVET STALUS.........cveiieiieieseee e nneas 88
Table 4-16 Verification Mode Options and Required Parameters (for VL-Oriented RX

Mode) 91
Table 4-17 Verification Mode Options and Required Parameters (for Chronological

MONITOr RECEIVE IMOTR) ... 105
Table 4-18 TCB CONENT....c.viieieieie ettt nes 107
Table 4-19 Error Conditions Available for Trggers. ... 108
Table 5-1 Program SampleS OVEIVIEWcccoveiiiieiiec et 120
Table 5-2 APl S/W Library Function Calls vs. Program Samples...........ccccoovvniniiinennnnn. 159

ARINC664 / AFDX Programmer’s Guide viii

7~y
AM

RIGHT ON TARGET

1 INTRODUCTION
1.1 General

Welcome to the Programmer's Guide AFDX/ ARINC-664. This programmer's guide, in
conjunction with the Reference Manual AFDX/ ARINC-664, is intended to provide the
software (s/w) programmer with the information needed to develop a host computer application
interface to AIM’s ARINC664 devices. The Reference Manual AFDX/ ARINC-664 provides
the detailed API s/w library functions.

1.2 How This Programmer's Guide is Organized

The Programmer's Guide AFDX/ ARINC-664 is divided into 6 sections. These sections
include the following:

Provides an introduction to the contents of the
Section 1 programmer's guide documentation conventions and
Introduction applicable documents.

Section 2 Provides a high level overview of the Avionics Full
AFDX Duplex Switched Ethernet (AFDX) Network structure,
Network protocols and frame formats.

Overview

Provides a high level overview of the hardware and
PCI-FDX software design. Included in the software section is
information concerning the compilers supported, a
description of the Board Support Package and how to
create an application program.

Section 3

Overview

ARINC664 / AFDX Programmer’s Guide 1

7~y
AM

Section 4 Provides the programming guidelines for the Library
Programming Administration and Board-level functions as well as the two
Using the API main functional systems on the AFDX devices including:

Library

- Transmitter

- Receiver

4.1 4.2 4.3
Library Admin Transmitter Receiver
& System Programming Programming

Provides an explanation of two Section 5
complete sample programs, and Program
references for function calls used in the Samples

sample programs.

Section 6
Notes

Provides expansion for all acronyms
and definitions for terms used
frequently in this document.

ARINCG664 / AFDX Programmer’s Guide

7~y
AM

RIGHT ON TARGET]

1.3 Conventions Used
1.3.1 General Documentation Conventions

We use a number of different styles of text and layout in this document to help differentiate
between the different kinds of information. Here are some examples of the styles we use and an
explanation of what they mean:

Italics - used as a placeholder for the actual name, filename, or version of the software
in use

Bold text - a function, or parameter, or used to highlight important information
Bold Blue - will be used to show reference documentation
Bold italics - caution, warning or note

Font - font used to show paths, directories and filenames within the body of text will
be shown in blue. For example:

C:\Windows\System32\Drivers\Aim fdx.sys

A smaller version of this font will be used to list
software code.

| - an action delineator that will lead you through nested menu items and dialog
box options to a final action, for example, the File | Open ..

In addition to text and layout convention, there are a couple of naming conventions used to
simplify the information herein. The PCI-FDX s/w library, is also called the Application
Programming Interface (API). For ease of documentation flow, the PCI -FDX s/w library will
be referred to from this point on as the APl S/W Library. In addition, the software and
firmware contained on the PCI-FDX bus interface board will be referred to as the API Target
SIW.

1.3.2 Parameter Naming Conventions

In order to understand the sample programs and individual programming examples contained in
this guide, we should review some of the parameter naming conventions used throughout the
APl S/W Library. Naming conventions have been used for naming constants, structures,
functions calls and data types.

ARINCG664 / AFDX Programmer’s Guide 3

7~y
AM

RIGHT ON TARGET]

Note: All constants, structures and functions used in the APl S/W Library are defined in the
AiFdx def.h header file. Data types used in the APl S/W Library are defined in
Ai cdef.h.

Naming conventions used include the following

e Constants - For every function call, a list of constants have been defined to
better describe the numerical value of the function input or output. (located in
AiFdx def.h). These constants will be used throughout this document.

e Structures - Named as ty_fdx_name where name is unique to the structure.
(located in AiFdx_def.h)

e Functions - Named as either Fdxname or FdxCmdname where name is unique
to the function (located in AiFdx_def.h)

¢ Fdxname functions do not involve driver commands to the bus interface
unit (BIU)
¢ FdxCmdname functions involve driver commands to the BIU

e Data Types - all variables are assigned an AIM equated data type as shown in
Table 1-1 below (defined in Ai_cdef.h)

Table 1-1 API S/W Library Data Type Naming Conventions
APl S/W Library Data Type (insl;l)zl'?es)
Ailnt integer 4
AiUlnt unsigned integer 4
Ailnt8 character 1
Ailnt16 short integer 2
Ailnt32 long integer 4
AiUInt32 unsigned long integer 4
AiUnt16 unsigned short integer 2
AiUInt8 unsigned character 1
AiChar character 1
AiUChar unsigned character 1
AiDouble double floating point 8
AiFloat single floating point 4

ARINCG664 / AFDX Programmer’s Guide 4

7~y
AM

RIGHT ON TARGET]

1.4 AIM Document Family

AIM has developed several documents that may be used to aid the developer with other aspects
involving the use of the PCI-FDX bus interface card. These documents and a summary of their
contents are listed below:

Reference Manual AFDX/ ARINC-664 - provides the AFDX application developer with the
detailed API library function calls. This guide is to be used in conjunction with the
Programmer's Guide AFDX/ ARINC-664.

Getting Started Manual AFDX/ ARINC-664 - assists first time users of AIM ARINC664
hardware with software installation, hardware setup and starting a sample project.

Hardware Manuals: provide the hardware user’s manual for the specified modules. The
document covers the hardware installation, the board connections, the technical data and
a general description of the hardware architecture.

PBA.pro Bus Analyzer Getting Started — introduces the PBA.pro Bus Analyzer and contains
links to further documentation.

AIM Network Server (ANS) Users Manual - assists users with installation and initial setup of
the AIM Network Server software. Client and Server configuration and
software/hardware requirements are outlined with complete step-by-step instructions for
software installation.

ARINCG664 / AFDX Programmer’s Guide 5

7~y
AM

RIGHT ON TARGET

THIS PAGE INTENTIONALLY LEFT BLANK

ARINCG664 / AFDX Programmer’s Guide 6

7~y
AM

RIGHT ON TARGET]

2 AFDX NETWORK OVERVIEW

The Avionics Full-Duplex Switched Ethernet (AFDX) Network is built around commercial
standards including: IEEE802.3 Ethernet Medium Access Controller (MAC) addressing,
Internet Protocol (IP) and User Datagram Protocol (UDP). Provisions have been added to
ensure guaranteed deterministic timing and redundancy required for Avionics applications. The
network data rates include 10Mbps, 100Mbps and 1000 Mbps.

This section will provide an overview of the following:
a. AFDX Network Structure
b. AFDX Protocol Stack
C. AFDX Frame Format.

Detailed information regarding the AFDX End System requirements can be found in the AFDX
End System Detailed Functional Specification.

ARINCG664 / AFDX Programmer’s Guide 7

7~y
AM

RIGHT ON TARGET

2.1 AFDX Network Structure

As shown in Figure 2-1, there are three types of AFDX Network elements including:

a. End System(s) - A device whose applications access the network components to
send or receive data from the network. End-Systems perform traffic shaping
which is enforced by Switches.

b. Switch(es) - A device which performs traffic policing and filtering, and forwards
packets towards their destination End-Systems.

C. Link(s) - All links/connections are copper or fiber optic, full duplex,
100Mbits/sec (no dedicated backbone bus for Inter-switch communications).

Redundancy is achieved by duplication of the connections (wires) and the Switches.

Figure 2-1 AFDX Network Topology

AFDX
Switch

AFDX
Switch

AFDX
AFDX Switch

Switch

ARINCG664 / AFDX Programmer’s Guide 8

7~y
AM

RIGHT ON TARGET

End-Systems communicate/exchange Frames through Virtual Links (VLs) as depicted in
Figure 2-1. A VL defines a unidirectional connection from one source End-System to one or
more destination End-Systems.

Figure 2-2 Virtual Link Scenario

B

X | |
B
e

=

VL: 2 VL: 3

e An AFDX Network can contain up to 64K VLs

ARINCG664 / AFDX Programmer’s Guide 9

7~y
AM

RIGHT ON TARGET

End-Systems perform traffic shaping and Integrity checking on each VL. The End-System
controls the flow for each VL in accordance with the Bandwidth Allocation Gap (BAG) which
Is depicted in Figure 2-3.

Figure 2-3 Bandwidth Allocation Gap (BAG)

BAG

>

Frame 1 e BAG values are in milliseconds: 1, 2, 4, 8, 16, 32, 64, 128
e Per VL, a maximum of 1000 Frames per second can be
transmitted.

For a VL, frames can appear on the link in a given time interval (Window) which is sized by the
BAG and the maximum allowed jitter as shown in Figure 2-4. Jitter is the difference between
the minimum and maximum time from when a source node sends a message to when the sink
node receives the message. Jitter is generally a function of the network design and multiplexing
multiple VVLs on one port.

Figure 2-4 Maximum Jitter Window

BAG BAG
< bl >

—— Maximum Jitter
; (_ Window

A

A

>
Jitter =0 0 < Jitter < Max Jitter = Max

ARINCG664 / AFDX Programmer’s Guide 10

7~y
AM

RIGHT ON TARGET

Each VL may consist of up to 4 sub-VLs. Each Sub VL is designated its own FIFO queue.
Scheduling of frames is based upon a Round-Robin transmission scheme as shown in Figure

2-5.

Figure 2-5

Sub-VL Round Robin Scheduling

IP
Sub-VL
FIFO’s
3ms
\ /3 ms
MAC
VL FIFO

The Sub VL FIFO queues are read on a round-robin basis by
the VL FIFO Queue to optimize the bandwidth of the VL

ARINC664 / AFDX Programmer’s Guide 11

7~y
AM

RIGHT ON TARGET

End-system ports, links and switches are duplicated for redundancy as shown in Figure 2-6.
Frames are concurrently transmitted over both networks.

Figure 2-6 Redundancy Management

Network B

e Frames are transmitted simultaneously over both networks
e On the Receiving End-System, “First Valid Frame wins”

Integrity checking is done per VL and per Network as shown in Figure 2-7.

Figure 2-7

Network B

Redundancy Management & Integrity Checking on a Receive End-System

Integrity Checking Redundancy -
Detect and eliminate s Management Application
invalid frames Eliminate Redundant
Frames

Integrity Checking
Detect and eliminate _
invalid frames

e Integrity Checking is based on Sequence Number and MCFL
(Maximum Consecutive Frames Lost).

e All Invalid Frames are discarded

ARINCG664 / AFDX Programmer’s Guide 12

7~y
AM

RIGHT ON TARGET

2.2 AFDX Protocol Stack

As shown in Figure 2-8, Avionics applications residing at End-Systems exchange messages via
the services of the User Datagram Protocol (UDP) Layer.

Figure 2-8 AFDX Protocol Stack

AFDX
Switch
oSl
Application Avionics | Avionics < > Avionics | Avionics
Application| Application Application] Application
Presentation
Session I I I I
Transport UDP < > UDP
Network IP < > IP
Datalink
Ethernet/MAC <> Ethernet/MAC |<«—» | Ethernet/MAC
Physical

e AFDX switches switch AFDX frames based on the MAC
Destination Address

ARINCG664 / AFDX Programmer’s Guide 13

7~y
AM

RIGHT ON TARGET]

Applications send/receive messages through two types of UDP ports as shown in Figure 2-9:
AFDX Communication Ports or Service Access Point (SAP) Ports. AFDX Comm Ports
communicate via a static "connection” i.e., the IP/UDP Source/Destination addresses are
contained in the AFDX frame header are static. SAP ports, however, are "connectionless” i.e.,
the E/S application can dynamically determine the destination address (IP address and UDP port
number) for messages transmitted, and messages can be received from multiple sources.

AFDX Comm ports provide two different types of services as defined by ARINC 653:

Queuing services - AFDX messages may be sent over several AFDX frames
(fragmentation by IP layer), no data is lost or overwritten

Sampling services - AFDX messages are sent in 1 Frame, data may be lost or
overwritten.

Figure 2-9 AFDXComm and SAP UDP Ports

| f\plpli?atf'on(?) ' ApApIication(s)

AFDX
(D-s82)
Port or
IP
Virtual
VL1 VL2 Links VL4 VL5
. AFDX Comm Ports are associated with an address “Quintuplet” consisting of:

- UDP Src/Dest Port

- IP Src/Dest Address

- MAC Dest Address (VL)
. SAP ports dynamical define their destination (IP address and UDP port #) for each transmission
Each AFDX Comm Port and each SAP port is associated with a UDP Port

Each UDP port is associated with a Virtual Link over which all messages sent/received via the port
travel. The VL used by the port is identified by a VL field within the IP layer’s destination address

The IP layer handles the fragmentation/reassembly functions required by Queuing and SAP ports
The Ethernet/MAC layer handles the Physical and Data Link functions in the AFDX network

No routing tables are required to map the IP destination address to MAC destination address
mapping
Up to 100Mbps Ethernet is supported

ARINCG664 / AFDX Programmer’s Guide 14

7~y
AM

RIGHT ON TARGET]

2.3 AFDX Frame Format

The AFDX Frame Structure is shown in Figure 2-10. This section will provide further
definition of the main components of the AFDX Frame Structure including:

a. MAC Header
b. IP Header
C. UDP Header

d. AFDX Payload.

Figure 2-10 AFDX Frame Structure

AFDX Frame Structure

S_tar_t MAC IP UDP AFDX Pa Ioad Sequencq
Preambld peiimiter Header Header Headef Messa)(;e Number

bytes 7 14 20 8 17...1471

Frame Size: 64...1518 Bytes
Preamble + Start Delimiter + InterFrame Gap: 20 Bytes
Duration of Minimum Frame: 6.72 sec
Duration of Maximum Frame: 123.04 usec

ARINCG664 / AFDX Programmer’s Guide 15

7~y
AM

RIGHT ON TARGET]

AFDX - MAC LAYER

The MAC header is comprised of a Source and Destination Address, and a Type Field. Each
address is 48 bits wide. The Destination Address identifies the virtual link. The Source Address
is a Unicast Address. The Destination Address is a Multicast Address.

Figure 2-11 MAC Header

MAC Header

Start MAC MAC
Preamblg pelimitel hast Addr [Source Addr Ethernet Payload

46...1500

¥ MAC DESTINATION

Constant Field

0000 0011 0000 0000 0000 0000 0000 0000 Virtual Link Identifier

32 bits

o
1
1
1
I
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
I
1
1

MAC SOURCE ADDRESS

Constant Field Network ID Equipment ID
0000 0010 0000 _ _
0000 0000 0000 0000 Dolrr[l)aln Side ID LOC%lon

24 bits 4 4 3 5

Interface
ID

ARINCG664 / AFDX Programmer’s Guide 16

7~y
AM

RIGHT ON TARGET]

AFDX - IP (INTERNET PROTOCOL) LAYER

Figure 2-12 shows the IPv4 header and expands the Source and Destination addresses. IP Source
Address is Unicast to identify the transmitter. IP Destination Address is Unicast to identify the

target subscriber or is Multicast.
Figure 2-12 IP Header

IP HEADER

S_tar_t MAC 1P
Preambl{ pelimiter Header Header

bytes 7 1 14 20 26...1480

IP Payload

X IP
Type of Fragment Fragment | Time to brotocol Header IP Source Besifiraiien

ersion Service identification Offset Live checksum Address
Address

16 13

IP SOURCE

Network ID Equipment ID Partition ID
Constant Field quip

0000 1010 i ; it
0000 Dolrgaln Side ID LOCEI)IOI’] 000 Partition

8 bits 4 4 3 5

IP DESTINATION ADDRESS <«

Constant Field
1110 0000 1110 0000
(multicast)

16 bits 16 bits

Virtual Link ldentifier

ARINC664 / AFDX Programmer’s Guide 17

7~y
AM

RIGHT ON TARGET]

AFDX - UDP (User DATAGRAM PROTOCOL) LAYER

Figure 2-13 shows the UDP layer. The UDP layer takes messages from the application process,
attaches source and destination port number fields for the multiplexing/demultiplexing service,
adds the UDP length and Checksum, and passes the resulting "segment" to the IP layer.

Figure 2-13 UDP Header

UDP HEADER

Start MAC IP UDP
Preamblg oeimiiel oqqer Header |[Header

7 1 14 20 8 18...1472

UDP Payload

Source Port Destination Port UDP length UDP Checksum

AFDX PAYLOAD AND SEQUENCE NUMBER

Figure 2-14 shows the AFDX payload contents which include a sequence number (0-255). The
sequence number is added by the transmitting End-System for each transmitted consecutive
frame of the same VL on the AFDX Network. It starts with 0, then wraps around to 1 when it
exceeds 255.

Figure 2-14 AFDX Payload and Sequence Number

AFDX PAYLOAD AND SEQUENCE NUMBER

Start MAC UbDP AFDX

Preamblq pelimiter AFDX Payload Sequence

Number

7 1 14 8 17...1471 1

Header Headel

ARINCG664 / AFDX Programmer’s Guide 18

7~y
AM

RIGHT ON TARGET]

3 AFDX OVERVIEW

The AIM's family of AFDX modules providing full function test, simulation, monitoring and
databus analyzer functions for AFDX applications. The key technical features of the AFDX Bus
Interface modules are:

Each AFDX port can act as Traffic Generator/ Simulator and Receiver/ Monitor
Supports AFDX- port related Frame Statistics

Provides configurable Redundancy Management for AFDX Receive and Transmit ports
Supports operational speeds of either 10MBit/s, 100MBit/s or 1GBit/s

High-Resolution time stamping of received frames

YV V V VYV V

Figure 3-1shows two typical application scenarios for any of AIM's AFDX Bus Interface Cards.
This section will provide an overview of the following AFDX-Module characteristics:
a. Functional overview of
N Traffic Generation
4 Traffic Receive/Monitor Operation
b. Hardware Overview
C. Software Overview
N Software Architecture
4 Board Support Package (BSP) Contents

4 Creating Your Own Host Application.

ARINCG664 / AFDX Programmer’s Guide 19

7~y
AM

RIGHT ON TARGET

Figure 3-1 FDX Bus Interface Card Application Scenarios

ﬁ
X

N *
% v
Ve —iee

W &
- e

. Application Scenario 1 Application Scenario 2
Switch Development/Testing ES4 Development/Test

. Configure one AFDX Transmit Port @ Configure the AFDX Transmit Ports
for Generic Transmit Mode to for UDP Port-Oriented Simulation
generate data as if from multiple (Redundant) to simulate the generation
End Systems with varying PGWT & of VLs transmitted by ES4.
IFGs.

‘ Configure one AFDX Receive Port Configure the AFDX Receive Ports for
for Chronologic Receive (Monitor) VL-Oriented Receive Operation
mode to record and monitor data (Redundant) to receive the generation
transmitted at one switch output. of VLs switched to ES4.

. Configure one AFDX Receive Port

for VL-Oriented Receive mode to
verify proper switching at another
switch output.

ARINCG664 / AFDX Programmer’s Guide 20

7~y
AM

RIGHT ON TARGET]

3.1 AFDX Functional Overview

The functionality of the AFDX module can be divided into the following:

a. AFDX Traffic Generation

b. AFDX Receive/Monitor Operation.
These functions are defined in the following sections.
3.1.1 AFDX Traffic Generation

The three AFDX Traffic Generation modes of data transmission are listed below:

a. UDP Port-Oriented Simulation - This mode simulates the AFDX Comm ports
(defined by ARINC-653) and SAP ports. AFDX Comm Ports communicate via a
static "connection” i.e., the IP/UDP Source/Destination addresses are contained
in the AFDX frame header are fixed. SAP ports, however, are "connectionless™
i.e., the E/S application
can dynamically Application(s) Application(s)
determine the destination et 1 |
address (IP address and
UDP port number) for
messages transmitted, and ~ AFPX SAP

. Comm
messages can be received Port P "Uggyer"" Port

from multiple sources.

An AFDX Comm port provide two different types of services:

4 Queuing service - AFDX messages are sent over several AFDX frames
(fragmentation by IP layer), no data is lost or overwritten.

4 Sampling service- AFDX messages are sent in 1 frame, data may be lost
or overwritten.

The end-systems, VLs, and partitions are represented by the IP-Addresses and
communication end points are described by the AFDX Comm UDP-Port.

SAP ports can also transmit and receive AFDX messages that are sent over one
or more AFDX frames, however, the protocol for that communication is not
determined by ARINC 653.

b. Generic Transmit Operation - This mode provides maximum flexibility and
consists of a frame based transmission sequence. Each frame can be associated
with attributes defining information about the relative timing between the frames,

ARINCG664 / AFDX Programmer’s Guide 21

7~y
AM

RIGHT ON TARGET]

error injection, payload-generation mode, transmission skew in redundant

operation mode and/or special events like a digital output strobe-signal.

For

high-throughput, special payload-generation modes can be used, so the hardware
takes parts of the frame-data from static send-fields. Because all frames must be
pre-buffered on the hardware, the number of frames is limited to the board-

resources.

Wl Send-Setup C:..4AIM GrbH',|

@ Globall & Ports [Generic Send-Listl

=loix|

Mapld | WL | SreoMAC | DstMAC | Protocol | SredP | DsteIP | Size | Statode | Gap | PGwT | Erorl.. | PGM | Stobe-Out |
1 1 02:00:00:01... 03:00:00:00.. UDP 10.1.331 22422401 B4 PGWT 8.000 ms - - no
1 2 02:00:00:01... 03:00:00:00.. UDP 10.1.331 22422402 B4 IFG 174.0.. - - no
1 3 02:00:00:01... 0300:00:00.. UDP 10.1.331 22422403 B4 IFG 50.00... - - no
1 4 02:00:00:01... 0300:00:00.. UDP 10.1.331 22422404 B4 PGWT 16.000ms - - no
1 5 02:00:00:01... 0300:00:00.. UDP 10.1.331 22422405 B4 IFG 1.00.. - - no
1 B 02:00:00:01... 0300:00:00.. UDP 10.1.331 22422406 B4 IFG 250.0... - - no
| y
C. Replay Operation
4 Physical Re-Transmission of pre-recorded network traffic

Table 3-1 defines the key features and differences between the UDP-Port Oriented transmission

mode and the Generic Transmission mode.

Table 3-1

Transmission Mode Key Features

UDP Port-Oriented Simulation

Generic Transmit Operation

Simulation of network traffic in accordance with AFDX
End System Detailed Functional Specification

Autonomous operation including sequencing of the
outgoing data packets with programmable interframe
gaps, without Host interaction.

Support Sampling & Queuing service implementation for
multiple VL's

Sampling and Queuing services can be specified for the
frames defined within the generic frame sequence.

Programmable Packet Intermessage gap

Flexible packet scheduling by using various packet timing
modes

VL simulation with Traffic Shaping and Sequence
Numbering

Programmable Sequence Numbering operation within the
transmission list

Synchronization of traffic between multiple AFDX- ports

Synchronization of traffic between multiple AFDX- ports

Start of traffic generation on external strobe

Start of traffic generation on external strobe and strobe
generation on packet transmission

Start of traffic on absolute time, which allows the
synchronization of multiple streams/modules.

Start of traffic on absolute time, which allows the
synchronization of multiple streams/modules.

Various Payload Generation modes, which reduces the
data exchange at high performance transmission

Transmission of the 'Packet Start Time stamp’ within the
payload of the outgoing frame

Enable/Disable specific VL's

Enable/Disable specific VL's

Error injection capabilities:
- Physical Error Injection on Frame Level (CRC,
Interframe Gap, Frame Size, Byte Alignment, ..)
- Logical Error Injection on MAC- /IP Layer
- Wrong Sequence Numbering
- Timing Error Injection (BAG- violation)

Error injection capabilities:
- Physical Error Injection on Frame Level (CRC,
Interframe Gap, Frame Size, Byte Alignment, ..)
- Logical Error Injection on MAC- /IP Layer
- Wrong Sequence Numbering
- Timing Error Injection (BAG- violation)

Redundant or non- redundant Operation available

Redundant or non- redundant Operation available

ARINCG664 / AFDX Programmer’s Guide

22

7~y
AM

RIGHT ON TARGET]

3.1.2 AFDX Receive / Monitor Operation

The Receive AFDX Receive / Monitor Operation Modes define how captured frames are
stored on the board and how data is filtered. The two Receive Modes are defined as follows:

a.

VL-Oriented Receive Operation - In this Receive Mode the UDP Port can
receive and store messages for either "connection™ oriented (AFDX Comm Ports)
or "connectionless” oriented (SAP) ports. The Receive AFDX Comm ports are
characterized by the address-quintuplet, (VL, Src.-IP, Dst.-IP, Src.-UDP, Dst.-
UDP), each with its own message storage area. In this mode, the user must
specify the exact address quintuplet in order for the VL frames to be captured.
SAP receive ports, however, may receive AFDX messages from multiple
sources. Therefore, the user only specifies the VL and UDP/IP destination adress
in order for the VL frames to be captured. The source of the AFDX frame is only
determined after the message has been received. (Trigger capability is not
provided in this receive mode.)

Chronological Receive Operation (Monitor Mode)- In this Receive mode all
VL data streams are captured and the frames are stored in a single memory
buffer. If desired, the user can specify additional VL filters/checking to be
performed on the captured frames. This mode provides for recording/saving the
captured data for replay. Four Capture modes are available.

4 SingleShot-Standard

In this mode, each port uses a pre-defined onboard memory area
(SingleShot memory) for capturing frames. After this memory is full, no
more frames will be stored. The size of singleshot-memory depends on
your board type and RAM-Size. Trigger Control Blocks (TCBs) can be
used to define the trigger condition that will start data capture (by default
capturing starts immediately from the first frame received) and how much
"pre-trigger data” is to be stored in the Monitor Buffer.

4 SingleShot-Selective
This mode is similar to SingleShot-Standard mode but Trigger-Control-
Blocks are used for filtering the in-coming frames. Before a frame is
saved in the SingleShot-memory it will be evaluated using the active
TCB. Only those frames which meet the TCB condition will be saved in
the onboard memory.

4 Continuous
In this mode, the SingleShot-memory is used as a ring-buffer. As soon
as the memory is full, old frames will be overwritten with new frames
(wrap-around). Trigger-Control Blocks can be used in this mode to
define the trigger condition that will start data capture (by default
capturing begins immediately from the first frame received).

ARINCG664 / AFDX Programmer’s Guide 23

7~y
AM

RIGHT ON TARGET]

4 Record
In this mode, the Monitor buffer is organized in the same way as in
Continuous mode. However, captured frames are written directly to a
user-specified file. Trigger-Control Blocks can be used in this mode to
define the trigger condition that will start data capture (by default
capturing begins immediately from the first frame received).

Table 3-2 defines the key features and differences between the Chronologic and VL-Oriented

Receive modes.

Table 3-2

Reception Mode Key Features

VL-Oriented Receive Operation

Chronological Receive Operation (Monitor
Mode)

VL- oriented multi buffering and Time Stamping of
received data packets

Full chronological traffic monitoring and analyzing
with relative gap time measurement and absolute Time
Stamping, concurrently with any other mode of
operation

VL-Oriented Filtering with optional Second Level
Filtering on Generic packet parameters

VL oriented Filtering with optional Second Level
Filtering on Generic packet parameters

Comprehensive trigger capabilities for traffic
capturing (VL, header info, error, data, receive time)

Programmable Data Capture modes providing
Continuous, Record, and Selective capture capability

Independent, programmable Buffer Size for each VL

Programmable Monitor Buffer Size, which allows a
massive on-board data buffering

Interrupt generation on dedicated Buffer Event

Interrupt generation on Buffer Events

VL-Oriented receive Counters and Error Accumulators
are provided

VL-Oriented receive Counters and Error Accumulators
are provided

Redundancy Management at redundant

configuration

port

Redundancy redundant

configuration

Management at port

Physical Error Detection on Frame Level
- CRC Error detection
- Frame Size Violation
- Interframe Gap violation
- Wrong Byte Alignment
Undefined Symbol received

Physical Error Detection on Frame Level
- CRC Error detection
- Frame Size Violation
- Interframe Gap violation
- Wrong Byte Alignment
Undefined Symbol received

AFDX- specific Error Detection
- Traffic Shaping verification
- Verification of static header fields (MAC, IP)
- Integrity Checking of VL related packets

AFDX- specific Error Detection
- Traffic Shaping verification
- Verification of static header fields (MAC, IP)
- Integrity Checking of VL related packets

Strobe generation on dedicated Trigger Event

ARINCG664 / AFDX Programmer’s Guide

24

7~y
AM

RIGHT ON TARGET

ARINCG664 / AFDX Programmer’s Guide 25

3.2 AFDX Software Overview

This section will provide an overview of the AFDX software including:

a. Software Architecture

b. Board Support Package (BSP) Contents

C. Creating a New Microsoft Visual C/C++ Application Program.

The instructions for using the API function calls are defined in Section 4.

3.2.1 AFDX Software Architecture

The AIM "Common Core" design, as shown in the previous section, provides for the utilization
of a common application s/w library of function calls to support host application interfaces to the
AFDX device(s). Figure 3-2 shows the high-level software architecture of the PCI-FDX module
and it's interface to a host computer application.

As shown in Figure 3-2, the APl S/W Library is utilized by the User's Application program to

7~y
[Vl

RIGHT ON TARGET]

control the AFDX target module. (As an option, the application developer can utilize the AIM

PBA.pro Bus Analyzer Software Bus Monitor function to monitor bus traffic setup by the User's
Application.) Both PBA.pro and the User's Application program utilize the same APl S/W

Library.

The APl S/W Library encapsulates operating system specific handling of Host-to-Target

communication in order to support multiple platforms with one set of library functions.
Operating systems and compilers supported by the API S/W Library are defined in Table 3-3.

Table 3-3 Compatible Operating Systems / Compilers

Operating Systems

Compilers

Windows 7/8/10 (32 bit, 64 bit)
Linux (32 bit, 64 bit)
VxWorks

LynxOS

Microsoft Visual Studio (2013 or

higher)

ARINCG664 / AFDX Programmer’s Guide

26

7~y
AM

RIGHT ON TARGET]

Figure 3-2 Host/Target Software Interface Diagram
PBA.pro User's
Bus Analyzer Application
Software
(optional)
A
—; !
API Software Unique 'C' function call / DLL
Library

Operating System ipdanaesdan

Application Level

Host-Target Interface

A

Operating System

d dent icati

ependent communication System Level
A 4
System Driver

(OS Dependent Device Driver)
A

Host
Backplane Target Level
Target
v
[Serial Interface] <4—» [Debug interface] Driver-host interface
o Operating System Nucleus Plus
Support software: -
 Monitor software AFDX ASP Driver Software
- LCA-Boot software
- UART / HW init

AFDX BIU Firmware

Board Hardware / AFDX specific Hardware

API/AMC-FDX

ARINCG664 / AFDX Programmer’s Guide 27

7~y

A

RIGHT ON TARGET]

As shown in Figure 3-2, the APl S/W Library consists of "C" functions which can be called

within your application program to setup and control the PCI-FDX module(s).

The AIM API S/W Library is supplied as a dynamic link library (DLL) containing the collection
of functions used to setup and command the PCI-FDX modules. A function in a DLL is only
connected to a program that uses it when the application is run. This is done on each occasion
the program is executed as shown in Figure 3-3. Two binary files are utilized by the application

program including:

a. api_fdx.dl1 - contains the executable code for the DLL.

b. api_fdx.1lib — defines the items exported by an AIM API S/W Library DLL
in a form which enables the linker to deal with references to exported items when

linking a program that uses the AIM API S/W Library DLL function.

Note: In order to utilize the APl S/W Library, api fdx.1ib must be linked
to the application program. Section 3.2.3provides further detail.

Figure 3-3 DLL and Program Interfaces

—

api_fdx.dll
Program C.exe

Program B.exe

l Program A.exe
v
1. Program A is loaded

Program A

2. api_fdx.dll is loaded

api_fdx.dll

3. Linkage to DLL function

The address of the function
is obtained from
api_fdx.lib and it is used to
call the function.

\ 4

Function

The api_fdx.lib and api_fdx.d11 files are provided in two forms for 32-bit and 64-bit

OS use with Microsoft Visual C/C++.

ARINCG664 / AFDX Programmer’s Guide

28

7~y
AM

RIGHT ON TARGET]

3.2.2 AFDX Board Support Package

The BSP is downloaded to your computer upon s/w installation for your device. (Please see the
corresponding Getting Started Manual for further information regarding s/w installation.)

ARINCG664 / AFDX Programmer’s Guide 29

7~y
AM

RIGHT ON TARGET]

3.2.3 Creating a New Microsoft Visual C/C++ Application Program

This section will review the following:

a. APl S/W Library header files that need to be included in your application
program

b. Windows C/C++ steps to create and compile a new application program.

3.2.3.1 Header File Defines for New Application Programs

For all platforms, the two C-syntax header files shown in Figure 3-4 are provided. Only the
AiFdx_def.h header file needs to be included in your application program. (This header file
provides for the inclusion of the Ai_cdef£ . h header file.)

Figure 3-4 API S/W Library Header Files

AiFdx def.h Al cdef.h

A

#include "Ai_cdef.h" data type definition

constant definition multi-platform support
structure definition

function defintion
error code constants)4

174

These header files are located in:

. . =5 FCI-FDR-Windews=- BEP-Yooxx
x:\Program Files\AIM GmbH\PCI-FDX-Windows-BSP- o anis
Vxxxx\spg =

X Tap
onbeard-=%
) sample

L)sFd

All header files need to be included in the search path when compiling S B
your new program as described in the following section.

ARINC664 / AFDX Programmer’s Guide 30

7~y
AM

RIGHT ON TARGET]

3.2.3.2 Creating and Compiling Your Application Program

Your new Console Win32 Application program can be created by using a sample program (See
Section 1, Program Samples) as a basis and modifying it as needed. Once your new application
has been created, there are three additional steps to configuring the Microsoft Visual C/C++
application before compiling to insure your program executes without error including:

a. Adding proper search paths for the APl S/W Library include files
b. Adding the preprocessor definition required for the PCI-FDX device

C. Linking the application program to the api_ fdx.d1l1l via connection to
api_fdx.lib and compiling your program

Note: api_ fdx.dll must be located in the same directory as the User's
Application executable(s).

Please review the following steps to accomplish the items above.

» To add the proper search paths for the APl S/W Library Header files perform the
following steps:

1. Select Tools | Options
The Options window will pop up.
2. Select the Directories Tab
: For Show directories for:, select Include Files
4. Add the Directory with the include files:

x:\Program Files\AIM GmbH\PCI-FDX-Windows-BSP-
Vxxxx\spg

5. Select OK

Options 2|
Editar | Tabs | Debug | Compatibifity | Build Directories | a EE
Blatform; Show directornies for;
| win3z =l finclide fies =
Directories: FE N e S

C:AProgram Files\Microsoft Visual Studic\WCIBWATLMMCLUDE d

CAPROGRAM FILES\AIM GMBH\API-ACI-ANI1553¥0E21\SPG
CAPROGRAM FILES\AIM GiBH A 1653VA115634x]-BSP-V0311VS PG
CAPROGRAM FILES\AIM GMBH\AY1553-PC-BSPV0100M:PG
CAPROGRAM FILESNAIM GMBHAAPI-ACI422 04010 PG

CAPROD
C:\PROGRAM FILES\AIM GMBH\PCI-FDX-Windows-BSP-Vxxxx

0K I Cancel |

ARINCG664 / AFDX Programmer’s Guide 31

)

RIGHT ON TARGET]

P To add the preprocessor definition required for the API/AMC-FDX device:

1. Select Project | Settings

The project settings window will pop up.

2. Select the C/C++ tab

3. Under Preprocessor Definitions enter AIM_WINDOWS and _AIM_FDX

Project Settings

[

Settings For. [\w/in32 Debug

F-EE AFDY_generic_sample_(1
[=-E8 AFDY_generic_sample_02
=-E8 AFD¥_laophacktest
" J _test
=-E8 AFDX_udp_controlt
B8 AFDX_udp_sample_01

2l
General | Debug CAC++ Lirk. | Hesourca EE
Categary:; IGeneraI j Reset |
Wwarning level: O ptiriz ationg:

fLevel 3 | |Disable Debug)]
[~ Wamings as emars [Generate browse info
Debug info;

IF'ru:ugram Databaze for Edit and Continue j

Preprocessor definitions:

|'W'IN32,_DEBUG,_CEINSEILE,_MB 5._AlM_wWINDOWS

Project Options:

Jnologo ML A3 AGm G A2 0d AD WING2E D -
" DEBUG" /D" _COMSOLE" /D " _MBCS" /D
"_AIM_WINDOWS" /Fp Debug/AFDR_test poh' M ﬂ

[ox |

Cancel |

)

4. Select OK

ARINCG664 / AFDX Programmer’s Guide

32

7~y
AM

RIGHT ON TARGET]

» To link the api_fdx.1lib and api_fdx.dl1 to the application program and
compile your program perform the following steps

1. Select your project file (in example, Project A Files)
2. Select Project | Add to Project | Files...

An "Insert Files into Project” window will pop up.
3. For Files of Type: entry, select Library Files (.lib)
4. For File Name: Look in

x:\Program Files\AIM GmbH\PCI-FDX-Windows-BSP-
Vxxxx\bin\

release
5. Selectapi_fdx.1lib
api_fdx.1lib will be added to your project.

Workspace "Workspace A% 1 project(z]
- Project A files

=423 Source Files

Frogram A.cpp
[C1 Header Files
|l FreeaurecFis
api_mil b

=4 Classiiew |] FileView |

6. Now, build the project by selecting Build | Build your program name.exe
7. Copy

x:\Program Files\AIM GmbH\PCI-FDX-Windows-BSP-
Vxxxx\bin\release\aim Fdx.dll

to
x:\your project location\debug\
8. The project can now be run by selecting Build | Start Debug | Go

ARINCG664 / AFDX Programmer’s Guide 33

THIS PAGE INTENTIONALLY LEFT BLANK

2

RIGHT ON TARGET]

ARINCG664 / AFDX Programmer’s Guide

34

7~y
AM

RIGHT ON TARGET]

4 PROGRAMMING USING THE API LIBRARY

Let's now begin to focus on the concepts of writing application programs to setup and control
the PCI-FDX module from the host. First, we can look at the complete list of API Library
function calls available for the host application developer.

The APl S/W Library function calls are divided into the following subgroups and listed in the
tables which follow:

a. Library Administration Functions (

Table 4-1) - used to gain general access to the physical resources provided on the FDX-
2/4 board. There are also functions to observe the resources. The resources are
divided into board- and port-resources.

b. Target Independent Administration Functions (Table 4-2) - utility functions
to help with IRIG time conversions, error translation, and Monitor Buffer
decoding.

C. System Configuration (Table 4-3)- Board level functions to reset the board,
setup IRIG time, status the version number of the board software and perform
resource tests.

d. Transmitter Functions (Table 4-4)) - are divided into three categories:

4 Global Transmitter Functions - used for when you are in either the
UDP Port-Oriented or Generic Transmit modes. These functions provide
transmitter mode control and status, trigger line 1/O setup, and VL
enable/disable.

4 Generic or Replay Transmitter Functions - used to define the AFDX
Generic AFDX Frame content including error injection, whether the
frames are transmitted cyclically or a certain number of times, and the
attributes of the transmission protocol, i.e. IFG, PGWT and skew.

4 UDP Port-Oriented Transmitter Functions - used to define the VL and
UDP port (AFDX Comm port or SAP port), AFDX Frame content
including error injection, and attributes of the transmission protocol, i.e.
BAG, and skew.

e. Receiver Functions (Table 4-5) - are divided into three categories:

4 Global Receiver Functions - used for when you are in either the
Chronologic Receive Operation (Monitor mode) or VL-Oriented Receive

ARINCG664 / AFDX Programmer’s Guide 35

7~y
AM

RIGHT ON TARGET]

modes. These functions provide the receiver mode control, reception
control, status, VL control and status, and Receiver Trigger line
configuration.

4 VL-Oriented Receiver Functions - used to simulate a Receive UDP
"connection" (AFDX Comm port) or "connectionless" (SAP port) for
received AFDX message storage.

i Chronologic Receive Operation (Monitor) Functions - used to setup
the Monitor capture mode, trigger(s) defining when and what to capture,
and to obtain status

Figure 4-1 shows the structure of a basic application program and the Function Call categories
associated with each major part of the program. The following sections will guide you in the
use of the API S/W Library functions. For detailed information regarding each function call
please refer to the Reference Manual AFDX/ ARINC-664.

Table 4-1 Library Administration Functions

Function Description
FdxInit Initializes the Interface Library. Returns a list of servers.
FdxQueryServerConfig Returns a list of resources of one server. Connects additional

server (additional to local available resources)

FdxQueryResource Gets detailed information about a resource
FdxInstallServerConfigCallback Provides a mechanism to notify PnP device changes
FdxLogin Login for one resource
FdxLogout Logout from a resource
FdxInstintHandler Installs a user-defined interrupt handler function
FdxDellntHandler Deletes the user-defined interrupt handler function
FdxExit Cleanup the Library internal used memory structures.

ARINCG664 / AFDX Programmer’s Guide 36

7~y
AM

RIGHT ON TARGET]

Table 4-2 Target Independent Administration Functions
Function Description
FdxCmdFreeMemory Frees memory, allocated by the Library, in the proper manner

FdxFwlrig2Structlrig

Converts an IRIG time in the format used by the Firmware to a structured
format.

FdxStructlrig2Fwlrig

Converts an IRIG time in the structured format to the format used by the
Firmware.

FdxAddlIrigStructlrig

Adds two IRIG time structures

FdxSublrigStructlrig

Subtracts two IRIG time structures

FdxTranslateErrorWord

Translates a firmware encoded Error Word for Error Information on
Receiver Side

GNetTranslateErrorWord

Translates a firmware encoded Error Word for GNET Error Information on
Receiver Side

FdxInitTxFrameHeader

Supports a default initialization of a Transmit Header Structure, needed in
Generic Transmit Mode

FdxProcessMonQueue Processes data read via FdAxCmdMonQueueRead.
Table 4-3 System Functions
Function Description
FdxCmdBoardControl Controls and resets the board operation mode.

FdxCmdlIrigTimeControl

Reads and writes the onboard IRIG Time

FdxCmdStrobeTriggerLine

Provides a trigger output strobe on system command.

FdxReadBSPVersion

Reads version numbers of board software package components.

FdxCmdBITETransfer

Performs transfer tests using available port resources of one FDX board.

ARINCG664 / AFDX Programmer’s Guide

37

7~y
AM

RIGHT ON TARGET]

Table 4-4

Transmitter Functions

Function

Description

Global Transmitter Functions

FdxCmdTxPortlnit

Initializes the transmitter

FdxCmdTxModeControl Defines the Mode of the transmitter

FdxCmdTxControl Starts and stops the transmitter

FdxCmdTxStatus Obtains global status information about the transmitter
FAXCmdTxTrgLineCtrl Controls Transmitter Associated Strobe Input/Output Lines
FdxCmdTxVLControl Controls VL (Enable / Disable)

FdxCmdTxStaticRegsCtrl

Controls Static Transmit Registers

Generic or Replay Transmitter

Functions

FdxCmdTxQueueCreate Creates a Transmit Queue for AFDX generic frames
FdxCmdTxQueueStatus Retrieves Status of an AFDX Frame Transmit Queue
FdxCmdTxQueueWrite Writes AFDX Frames to the Queue
FdxCmdTxQueueUpdate Updates AFDX Frames of a generic Queue on the fly

UDP Port-Oriented Transmitter Functions

FdxCmdTxCreateVL

Creates a Virtual Link, which can be used for transmission.

FdxCmdTxCreateHiResVL

Creates a Virtual Link, which can be used for transmission
with a high resolution BAG.

FdxCmdTxUDPCreatePort

Creates a AFDX Comm UDP port for transmission.

FdxCmdTxUDPChgSrcPort

Changes the source of a UDP port.

FdxCmdTxUDPDestroyPort

Destroys a configured AFDX Comm UDP port.

FdxCmdTxUDPWrite

Writes one complete AFDX Payload message to a Tx AFDX Comm
UDP port

FdxCmdTxUDPBlockWrite

Writes one or more complete AFDX Payload Messages to multiple
AFDX Comm UDP ports

FdxCmdTxSAPCreatePort

Creates a SAP UDP port for transmission.

FdxCmdTxSAPWrite

Writes an AFDX Payload message to a Tx SAP UDP port.

FdxCmdTxSAPBlockWrite

Writes one or more AFDX Payload Messages to multiple SAP UDP
ports

FdxCmdTxUDPGetStatus Retrieves the status of a transmission AFDX Comm or SAP UDP
port
FdxCmdTxUDPControl Controls UDP Port operation (Enable / Disable and error injection)

FdxCmdTxVLWrite

Writes raw entire Frames to the VL-Buffer (UDP functions above
are N/A when using this writing method)

FdxCmdTxVLWriteEx

Writes Frames to the VL-Buffer with extended frame control
possibilities

ARINC664 / AFDX Programmer’s Guide

38

7~y
AM

RIGHT ON TARGET]

Table

4-5 Receiver Functions

Function

Description

Global Receiver Functions

FdxCmdRxPortlnit

Initializes receiver on this port

FdxCmdRxModeControl Defines the Mode of the receiver
FdxCmdRxControl Starts and stops the receiver
FdxCmdRxStatus Obtains status information about the receiver
FdxCmdRxGlobalStatistics Obtains global statistics about the bus load
FdxCmdRxVLControl Controls settings for each Virtual Link

FdxCmdRxVLControlEx

Controls extended settings for each Virtual Link

FdxCmdRxVLGetActivity

Obtains Activity information of one Virtual Link

FdxCmdRxTrgLineControl

Controls Receiver associated Strobe Input/Output Lines

VL-Oriented Receiver Functions
FdxCmdRxUDPCreatePort Creates an AFDX Comm UDP port
FdxCmdRxUDPChgDestPort Changes destination of a UDP port
FdxCmdRxUDPDestroyPort Destroys an AFDX Comm UDP port
FdxCmdRxUDPRead Reads one complete AFDX Payload message from a Rx AFDX
Comm UDP port
FdxCmdRxUDPBlockRead Reads one or more AFDX Payload Messages from multiple AFDX
Comm UDP ports
FdxCmdRxSAPCreatePort Creates a SAP UDP port for reception.
FdxCmdRxSAPRead Reads a complete AFDX Payload message from a Rx SAP UDP
port.
FdxCmdRxSAPBlockRead Reads one or more complete AFDX Payload Messages from
multiple SAP UDP ports
EdxCmdRxUDPControl Allows a host interrupt on UDP frame reception
FdxCmdRXUDPGetStatus Obtains the Status of a SAP or AFDX Comm UDP port
Chronologic Receiver Operation (Monitor) Functions

FdxCmdMonCaptureControl

Defines the capture mode

FdxCmdMonTCBSetup

Defines a Trigger Control Block

FdxCmdMonTrgWordIni

Initializes the Monitor Trigger Word

FdxCmdMonTrglndexWordIni

Initializes the Monitor Trigger Index Word

FdxCmdMonTrgIndexWordIniVL

Initializes the VL specific Monitor Trigger Index Word

FdxCmdMonGetStatus Obtains the Status of a Monitor port
FdxCmdMonQueueControl Creates a Queue, associated with the Monitor
FdxCmdMonQueueRead Reads data from a Monitor Data Queue
FdxCmdMonQueueSeek Sets the internal Read index to a Monitor Data Queue
FdxCmdMonQueueTell Gets the internal Read index to a Monitor Data Queue
FdxCmdMonQueueStatus Shows the status for a monitor capture qgueue of a receiver port

ARINC664 / AFDX Programmer’s Guide

39

7~y
AM

RIGHT ON TARGET]

Figure 4-1 Basic Application Program Structure

Initialization--->Board setup--->Tx Port Setup---> Rx Port Setup---> Start Tx/Rx
---> Retrieve Status ---> Shutdown

{
- v Decide how you want to utilize the full-duplex ports on your board.
- Determine the Transmit/Receive modes your application requires.
Initialization Library Administration Functions
(1) API Library &
(2) Board Login Target Independent Administration Functions
(3) Port Login

5 Board Handle
Port Handles

Board Setup System Functions
(1) single or redundant mode, bit rate &

MAC/IPheader verification register
(2) IRIG time

Port Tx Setup
(1) Assign Portmap ID to each Tx port
(2) Define Transmitter mode (UDP Port-
Oriented, Generic Transmit or Replay)

N

Global Transmitter Functions

UDP Port- UDP Port-Oriented Setup Generic/Replay Transmit Setup Generic &
Oriented | (1) Define the VL & Sub VL (1) Allocate queue for the storage of Replay
Transmitter characteristics the frames to be transmitted. Transmitter
Functions | (2) Write UDP port messages created (2.1) Define the attributes (non-data) Functions
to Tx port of the generic Tx frame
(2.2) Insert the data into the generic
Tx Frame
(2.3) Write the Frame attributes and
the Frame data to the Tx Queue

ARINCG664 / AFDX Programmer’s Guide 40

7~y

A

VL-Oriented
Receiver
Functions

Port Rx Setup
(1) Assign Portmap ID to each Rx port
(2) Define Receiver mode (VL-Oriented
or Chronological Receive)

Global Receiver Functions

N

RIGHT ON TARGET]

(1) Define VL characteristics to look

(2) Setup Rx UDP port (AFDX Comm

VL-Oriented Setup

for (VL ID and range) and type of
verification required

or SAP port)

Chronologic (Monitor) Setup
(1) Define capture mode
(2) Create Monitor queue to hold
captured data.

Chronologic
Receiver
Functions

Start Tx
(1) Send the AFDX frame cyclically or
a certain number of times
(2) Setup to start immediately or wait
for start time/strobe input

Global Tranmsitter Functions

Start Rx
(1) Start receiving the AFDX frames
and reset/no reset status counters

Global Receiver Functions

Global Transmitter Functions
Global Receiver Functions
Library Administration Functions
VL-Oriented Receiver Functions
Chronologic Receiver Functions

Global Transmitter Functions
UDP Port-Oriented Transmitter Functions
Generic & Replay Transmitter Functions

Global Receiver Functions
VL-Oriented Receiver Functions
Chronologic Receiver Functions

Retrieve Status
(1) Tx Status
(2) Rx Status
(3) Retrieve Captured data

ARINC664 / AFDX Programmer’s Gui(

Stop Tx/Rx - Shutdown
(1) Stop TX/Rx
(2) Free Resources
(3) Destroy Port (for VL-Oriented mode) or Delete
Monitor Queue (For Chronologic Receive mode)
(4) Logout of each resource (Board and Port(s))

7~y
AM

RIGHT ON TARGET]

4.1 Library Administration and System Programming

This section will discuss some of the typical scenarios a programmer would encounter that
would require the use of the Library Administration, Target Independent Administration, and

System, as listed in

Table 4-1, Table 4-2, and Table 4-3 respectively. These scenarios include:

a.
b.

C.

41.1

Initialization, Login and Board Setup
Getting AIM Board Status and Configuration Information
Utilizing IRIG-B.

Initialization, Login, and Board Setup

This section will discuss the function calls required to support initialization and shutdown of the
Application interface to your AIM board/module. Reference Section 1, for additional examples
of the function calls described in this section.

The basic Library Administrative and System functions supporting initialization & shutdown
include the following:

a.

FdxInit - initializes AP1 S/W Library.

FdxInit is the first function call to be issued. It returns o

) Initialization
the names of available servers at px ServerNames. _If (1) API Library
px_ ServerNames = "local", the AFDX board is (2) Board Login
located where the APl is running. If px_ServerNames | (3) PortLogin
= "NULL", the end of the list has been reached.

Note: This version will only return "local” indicating that the AFDX board is
located where the API is running. To connect to an AIM Network Server
containing AFDX boards, use FdxQueryServerConfig.

FdxQueryServerConfig - obtains the number of boards and their configuration.
(Also allows for a connection to an AIM Network Server (ANS) containing
AFDX boards.)

Once the Application interface has been initialized, the FdxQueryServerConfig
function should be used to obtain the configuration of the AFDX boards on
the computer/server.

FdxQueryServerConfig returns the list of resources using the structure TY-
RESOURCE_LIST_ELEMENT. The resource information returned includes a
resource ID, whether the resource is a board or port, board name. This

ARINCG664 / AFDX Programmer’s Guide 42

7~y
AM

RIGHT ON TARGET]

information is used to login to the board and port(s) using the function
FdxLogin.

Note: This function can be used to connect to a remote ANS PC. If an
ac_SrvName other than “local” is specified this function checks that PC
to determine if a valid ANS is found. If a valid ANS is found on the
specified PC this function connects to that server and returns a list of
available resources of that PC.

C. FdxLogin - establishes target communication for a specific resource.

For each resource in the system, the resource (board and port) must then be
logged into using the server name "local™ or the name of remote ANS, and the
Resource ID returned by FdxQueryServerConfig. FdxLogin also requires as
input information about the client, using the TY_FDX_CLIENT _INFO structure.
MSWindows functions, GetComputerName and GetUserName can be used
to obtain this information

Note: For login to ports to be configured as redundant, only the first resource
ID of the two physical ports can be used.

d. FdxCmdBoardControl - used to control the
global setting of the board.

Board Setup

The purpose of this function is to setup the (1) single or redundant mod, bit
port configuration (single or redundant) and rate & MAC/IP header
the port speed (10 Mbps or 100 Mbps verification register

(default) or auto negotiation). In addition, this | (&) 'RIGtme

function sets up the board to verify the MAC
and/or IP header (1% 32 bytes of a frame) against either a customer defined value,
an AFDX specific register, or Boeing specific register or the default register
which is defined by the program-specific board type. The physical ports of the
board are configurable in two different ways.

4 Single - The port works as a single port. This means that the accessible
port is represented by one physical port. In this mode it is possible to do
traffic policing for this port.

s Redundant - The port works as a redundant port. This means that the
accessible port is represented by two physical ports which are redundant.
In this mode, the AFDX Redundancy Management Algorithm (RMA) is
active and only the RMA passed frame is transmitted to the application.
For login to that port only the first resource ID of the two physical ports
can be used. A login to the second resource will cause an error. If the

ARINCG664 / AFDX Programmer’s Guide 43

7~y
AM

RIGHT ON TARGET]

first of two ports is set to redundant mode, the second port will also be set
to redundant mode. For the redundant port mode both physical ports are
managed by one BIU.

...prior to termination:

e. FdxLogout - This function
closes the application interface

for the specified (board and
port) resource and must be
called last in an application
program for all opened
resources. After calling this
function the handle is invalid
and it is not possible to use it for

Stop Tx/Rx - Shutdown
(1) Stop Tx/Rx
(2) Free Resources
(3) Destroy Port (for VL-Oriented mode) or Delete
Monitor Queue (For Chronologic Receive
mode)
(4) Logout of each resource (Board and Port(s))

further function calls.

The following code demonstrates the Initialization, Board Setup, Login and Logout
Functions.

The code first searches through the list of servers found using FdxInit, and when "NULL" is
found, the end of the list has been reached. If "local” was in the list, an AFDX board has been
found on the local computer/server. This name, "local”, is then wused in the
FdxQueryServerConfig function.

The code continues to search in the Resource List returned by FdxQueryServerConfig until
"NULL" is found indicating the end of the list has been reached. If the resource is a board, the
board is logged into, and the board handle is obtained. If the resource is a port, then the port is
logged into and the port handle is returned. These handles will be used for all future API
function calls. .

The code configures the ports on the board to single (i.e., not redundant).

AiChar ServerName[128] = "local";
bool bRetSuccess = false;
bool bFoundLocalServer = false;
TY_SERVER_LIST * px_ServerList = NULL;

TY SERVER LIST * px_ TmpServer;

TY RESOURCE LIST ELEMENT * pRLE = NULL;

NULL;

TY RESOURCE LIST ELEMENT *
TY FDX CLIENT INFO

AiUInt32 ul HandleBoard = 0, ul HandlePortl = 0, ul HandlePort2 =

printf ("\r\n FdxInit ()
if (FdxInit (&px_ServerList)
{

PRLEHead =
x ClientInfo;

0;

\r\n") ;

= FDX_OK)

printf ("FdxInit Failed!!!\n");

ARINCG664 / AFDX Programmer’s Guide

44

7~y
AM

RIGHT ON TARGET

// free the server-list
if (px_ServerList != NULL)
{
FdxCmdFreeMemory (px ServerList, px ServerList->ul StructId);
}
return (bRetSuccess) ;
}
// search the server-list for local server
px_TmpServer = px ServerList;

while ((px TmpServer != NULL) && (!bFoundLocalServer))
{
if (stricmp (px TmpServer->auc ServerName, "local") == 0)
{
bFoundLocalServer = true;
}
else

{
px TmpServer = px TmpServer->px Next;
}
}

if (bFoundLocalServer)
{ // ok, we found a local server
// lets query the configuration of this server
if (FdxQueryServerConfig("local", &pRLEHead) == FDX OK)
{
pRLE = pRLEHead;
while (pRLE != NULL)
{ //--- login to resources
switch (pRLE->ul ResourceType)
{
case RESOURCETYPE BOARD:
// Board Login
if (ul HandleBoard == 0)
{

if (FdxLogin("local", &x ClientInfo, pRLE->ul ResourcelD,
&ul HandleBoard) != FDX OK)
{
ul HandleBoard = 0;
printf ("Board Login Failure!!!\n");

}

break;

case RESOURCETYPE PORT:
// Port Login
if (ul HandlePortl == 0)
{
if (FdxLogin("local", &x ClientInfo, pRLE->ul ResourcelD,
&ul HandlePortl) != FDX OK)

ul HandlePortl = 0;
printf ("Port 1 Login Failure!!!\n");
}
}
else
if (ul HandlePort2 == 0)
{

0,

0,

if (FdxLogin("local", &x ClientInfo, pRLE->ul ResourceID, 0,

&ul HandlePort2) != FDX OK)

ul HandlePort2 = 0;
printf ("Port 2 Login Failure!!!\n");

ARINCG664 / AFDX Programmer’s Guide

45

7~y
AM

RIGHT ON TARGET]

break;
}
PRLE = pRLE->px Next;
}

This completes the Initialization and Login of the board.

Now let's perform Board Setup for single (not redundant mode), and Verification mode set to
compare agains the AFDX program specific verification register.

// perform board setup

int i;

TY FDX BOARD CTRL IN x BoardCtrlIn;
TY FDX_BOARD CTRL OUT x BoardCtrlOut;

memset (&x BoardCtrlIn, 0, sizeof(x BoardCtrlIn));
memset (&x BoardCtrlOut, 0, sizeof(x BoardCtrlOut));

if (ul HandleBoard > 0)

{
//--- 1init input structure
for (i=0; i<FDX MAX BOARD PORTS; i++)
{

x BoardCtrlIn.aul PortConfig[i] = FDX SINGLE;
x BoardCtrlIn.aul PortSpeed[i] = FDX 100MBIT;
x BoardCtrlIn.aul ExpertMode[i] = FDX EXPERT MODE;

}
x BoardCtrlIn.ul RxVeriMode = FDX BOARD VERIFICATION TYPE AFDX;

//-—-- reset board
if (FDX OK != (FdxCmdBoardControl (ul HandleBoard, FDX WRITE, &x BoardCtrlIn,
&x BoardCtrlOut)))
{
printf ("Board Reset Failure!!!\n");
}
else

{
printf ("Board Initialized\n");
}
}

This completes Board Setup.

..... and prior to termination, Logout of each resource (board and port).
// Close Device
if (ul HandleBoard != 0)
{
if (FDX ERR == FdxLogout (ul HandleBoard)) {
printf ("FdxLogout Board Error.\n");
}
else {
printf ("FdxLogout Board done.\n");
}
}
if (ul HandlePortl != 0)
{
if (FDX ERR == FdxLogout (ul HandlePortl)) {
printf ("FdxLogout Error 1.\n");
}
else
{
printf ("FdxLogout Portl done.\n");
}
}
if (ul HandlePort2 != 0)

ARINCG664 / AFDX Programmer’s Guide 46

7~y
AM

RIGHT ON TARGET]

{
if (FDX ERR == FdxLogout (ul HandlePort2))
{
printf ("FdxLogout Error 2");
}
else
{
printf ("FdxLogout Port2 done.\n");
}
}

Note: In addition to Board and Port Logout, Monitor Queue, and or Tx/Rx UDP Port must
also be deleted/destroyed if previously created prior to termination
(FdxCmdMonQueueControl, FdxCmdTxUDPDestroyPort, and
FdxCmdRxUDPDestroyPort).

| Note: Before Programm exit (close of library) call FdXEXxit() to free resource list.

/* free the resource list, the device list and the server list */
if (FDX OK != FdxExit())
printf ("\r\n FdxExit () FAIL");

ARINCG664 / AFDX Programmer’s Guide 47

7~y
AM

RIGHT ON TARGET]

4.1.2 Getting AIM Board Status and Configuration Information

Once you have initialized and opened the connection to the AIM board as described in the
previous section, you can obtain the status of the configuration of the board and the software
versions contained on your AIM board. The system functions that perform this status are as

FdxQueryResource - Obtains information about the board or port resource,
including board name, serial number, physical ports available, etc., and which
clients are using this resource.

FdxReadBSPVersion - Returns the version number of all AIM board software
package components

FAxCmdBITETransfer - Performs some transfer tests using available port
resources of one FDX board. This function will determine the number of ports
on the board. If only two ports, it will test them against each other. If four ports
are used, Port 1 and Port 2 will be tested against each other and Port 3 and Port 4
will be tested against each other

Port 1 and Port 2 must be connected with a Loop-Back cable (crossover), if
available Port 3 and Port 4 must be connected with a Loop-Back cable
(crossover).

Note: This test should be performed prior to login. Only “local” operation of
the resources supported.

FdxCmdBoardControl - this function can also be used to read back the
configuration of the board including: port configuration (single or redundant),
port speed, connection/link status, and size of free global and shared memory.

ARINCG664 / AFDX Programmer’s Guide 48

7~y
AM

RIGHT ON TARGET]

4.1.3 Utilizing IRIG-B

The APl S/W Library provides one System function call to | 5
setup/read/write IRIG-B time, and three Target Independent

Administration Functions to convert and calculate IRIG-B time

. . Board Setup

including: (1) single or redundant mode
& bit rate

a. FdxCmdlrigTimeControl- Sets/writes the IRIG- (2) IRIG time
B time on the on-board IRIG timecode encoder, or
allows the IRIG-B input to be received from an external source.

b. FdxFwlrig2Structlrig - converts the IRIG-B time from firmware format to 32-
bit values for each hour, minute, second, day, millisecond and microsecond
value.

s This function may be required to reformat the IRIG time from the
received frames through functions FdxCmdRxUDPRead and
FdxCmdMonQueueRead (See Section 4.3.1.1 for coding example.)

C. FdxStructlrig2Fwlrig - converts the IRIG-B time from the structure format

(provided with FdxFwlrig2Structlrig) to the Firmware format

d. FdxAddlIrigStructlrig and FdxSublrigStructlrig - adds or subtracts two
Structured IRIG values.

The following is an example of the FdxCmdIrigTimeControl and FdxAddlrigStructlrig.
Notice the declaration of the x IrigTimeA, B and C as type TY FDX IRIG TIME.
TY FDX IRIG_TIME isdefinedinthe AiFdx def.h header file.

Note: To obtain an accurate time stamp value you should delay the immediate reading of the
IRIG time.

Note: IRIG time starts with "'DAY one'" (First of January) not with ""DAY zero"'.

AiInt32 r RetVval;

TY FDX IRIG TIME x IrigTimeA, x IrigTimeB, x IrigTimeC;
AiUInt32 ul Mode;

time t clock; /* Posix */

struct tm *pxSystemTime; /* Posix */

/* Read Irig Time (A) */
if (FDX OK != (r RetVal = FdxCmdIrigTimeControl (ul Handle, FDX IRIG READ,
&x IrigTimeA, &ul Mode)))
{
printf ("\r\nFdxCmdIrigTimeControl () failed.");
}

/* Set Irig Time to Day 001:00:00:00.000 */
x IrigTimeB.ul Day =1;

ARINCG664 / AFDX Programmer’s Guide 49

7~y
AM

RIGHT ON TARGET

x IrigTimeB.
x IrigTimeB.
x IrigTimeB.
x IrigTimeB.
x IrigTimeB.
x IrigTimeB.

ul Hour

ul Min

ul Second
ul MilliSec
ul MicroSec
ul NanoSec

[cNoNoNoNeoNoNe)
Ne Ne Ne Ne o Ne Ne N

x IrigTimeB.ul Info =
if (FDX OK != FdxCmdIrigTimeControl (ul Handle, FDX IRIG WRITE, &x IrigTimeB,
&ul Mode))
printf ("\r\nFdxCmdIrigTimeControl () failed.");
AIM_WAIT(6000);
/* And Read it Back after 6 seconds (B) */
if (FDX OK != FdxCmdIrigTimeControl(ul Handle, FDX IRIG READ, &x IrigTimeB,
&ul Mode))
printf ("\r\nFdxCmdIrigTimeControl () failed.");

/* Add Irig A and Irig B */

x IrigTimeC

= FdxAddIrigStructIrig(&x IrigTimeA,

/* Set Irig Time To Host Time */

&x IrigTimeB) ;

clock = time((time t*)NULL);
pxSystemTime = localtime(&clock);
x IrigTimeA.ul Day = pxSystemTime->tm yday +1;
x IrigTimeA.ul Hour = pxSystemTime->tm hour;
x IrigTimeA.ul Min = pxSystemTime->tm min;
x IrigTimeA.ul Second = pxSystemTime->tm sec;
x IrigTimeA.ul MilliSec = O;
x IrigTimeA.ul MicroSec = 0;
x IrigTimeA.l Sign = 0;
if (FDX OK != FdxCmdIrigTimeControl (ul Handle, FDX IRIG WRITE, &x IrigTimeA,
&ul Mode))
printf ("\r\nFdxCmdIrigTimeControl () failed.");
AIM WAIT(6000);
/* Set source to external */
if (FDX OK != FdxCmdIrigTimeControl (ul Handle, FDX IRIG EXTERN, NULL, &ul Mode))
printf ("\r\nFdxCmdIrigTimeControl () failed.");
/* Set source to intern */
if (FDX OK != FdxCmdIrigTimeControl (ul Handle, FDX IRIG INTERN, &x IrigTimeB,
&ul Mode))
printf ("\r\nFdxCmdIrigTimeControl () failed.");

4.1.4 Interrupt Handling

If setup by the user, interrupts can be generated by the Receiver functions. (Interrupts for
Transmit operations are planned for future enhancements.) The type of interrupts available and
the associated setup function required to setup the interrupt is defined in Table 4-6. Figure 4-2
shows the basic steps involved in setting up and creating an application utilizing interrupts.

ARINCG664 / AFDX Programmer’s Guide 50

2

RIGHT ON TARGET]

Table 4-6 Available Interrupt Types and Related Function Call
Transmitter Receiver
FdxCmdTxQueueWrite* FdxCmdRxVLControlEx
Interrupt when BIU is instructed to stop Interrupt on:
or synchornize. - Frame Reception for user-specified VL
*In Future API - Frame Error for a user-specified VL

- Buffer Full/ Half Full/Quarter Full for a
user-specified VL

FdxCmdMonTCBSetup
Interrupt on:
- Trigger Control Block event is true.

The FdxInstintHandler and FdxDellntHandler function calls are used to setup and remove
the interrupt setting for a specified BIU. These functions are discussed below and sample code
is provided demonstrating Interrupt setup using these functions. The additional software setup
required for the BC, RT, BM, and/or Replay function call(s) is discussed in the associated
section of this document:

The functions available to setup interrupts and interrupt handler execution include the following
Library Administration functions:

a. FdxInstIntHandler - Provides a pointer to the interrupt handler function. The
following code installs an Interrupt Handler function named
userInterruptFunction to handle interrupts generated by the RXx
Monitor (FDX INT RT).

//Install Interrupt Handler function to handle Receive monitor interrupts
FdxInstIntHandler (ul Handle, FDX INT RX, userInterruptFunction);

4 The Interrupt Handler function is a function that you create to perform
application specific processing based on the type of interrupt received.

s Only one interrupt handler is required, however, you can also create one
interrupt handler for each type of interrupt. (Currently only Receive
interrupts are available for processing.)

4 Interrupt Handler function input parameters must follow a pre-defined
format as defined in the FdxInstintHandler function call in the
Reference Manual AFDX/ ARINC-664:

void userInterruptFunction (AiUInt8 bModule, AiUInt8 uc_ Port,
AiUInt8 uc_ Type,TY FDX INTR LOGLIST ENTRY x Info)

ARINCG664 / AFDX Programmer’s Guide 51

7~y
AM

RIGHT ON TARGET]

b. FdxDellntHandler - Removes the pointer interface to the interrupt handler
function. This function should be called prior to the module close (FdxLogout).
The following code uninstalls an Interrupt Handler function named
userInterruptFunction to handle interrupts generated by the RX

Monitor (FDX INT RT).
//Uninstall the Receive interrupt handler function(s)

FdxDelIntHandler (ul Handle, FDX INT RX);

Further definition and examples of these interrupt scenarios can be found in the
afdx_Sample.exe (included in the BSP with sources).

ARINCG664 / AFDX Programmer’s Guide 52

7~y
AM

RIGHT ON TARGET]

Figure 4-2 Interrupt Setup Process

= v Decide which type of interrupt is required for
- your application

Create an
Interrupt Handler
application to process
interrupt/data when
interrupt occurs.

2

Include function call FdxInstintHandler
to intialize the BIU with a pointer to your

Interrupt Handler.

Setup the Transmitter/Receiver
function(s) interrupt(s) as required
by your application.

4]

Delete the the host-to-AIM board
interrupt setup prior to the end of
your application using
FdxDellntHandler.

ARINCG664 / AFDX Programmer’s Guide 53

7~y
AM

RIGHT ON TARGET]

4.2 Transmitter Programming

The AFDX transmit port can be configured in one of three AFDX-Traffic Generation modes of
data transmission as listed below:

a. UDP Port-Oriented Simulation - This mode simulates the AFDX Comm ports
(defined by ARINC-653) and SAP ports. AFDX Comm Ports communicate via a
static "connection” i.e., the IP/UDP Source/Destination addresses are contained
in the AFDX frame header are fixed. SAP ports, however, are "connectionless”

e., the E/S application
can dynamically Appllcatlon(s) Application(s)
determine the destination s A i
address (IP address and

SAP

UDP port number) for
messages transmitted, AFDX

Comm
and messages can be por VY OU;}ngerOO QUDP La?er Port

received from multiple
sources.

An AFDX Comm port provide two different types of services:

4 Queuing service - AFDX messages are sent over several AFDX frames
(fragmentation by IP layer), no data is lost or overwritten.

4 Sampling service - AFDX messages are sent in 1 frame, data may be
lost or overwritten.

The end-systems, VLs, and partitions are represented by the IP-Addresses and
communication-end points are described by the AFDX Comm UDP-Port.

SAP ports can also transmit and receive AFDX messages that are sent over one
or more AFDX frames, however, the protocol for that communication is not
determined by ARINC 653.

b. Generic Transmit Operation - This mode provides maximum flexibility and is
based on a frame based transmission sequence. Each frame provides information
about the relative timing between the frames, error injection, payload-generation
modes, transmission skew in redundant operation mode and/or special events like
a digital output strobe-signal. For high-throughput, special payload-generation
modes can be used, so the hardware takes parts of the frame-data from static
send-fields. Because all frames must be pre-buffered on the hardware, the
number of frames is limited to the board-resources.

il Send-Setup C:'..4 ATM GmbH' fdX, —-10] x|
Q Globa\l = Ports [Gereric Send-List |
Mapdd | WL | SieMAC | DstMAC | Pratocel | SredP | DstdP | Size | StanMode | Gap | PGWT | Emard... | PGM | Stobe-Out |

1 02:00:00:01 03:00:00:00.. UDP 101331 22422401 B4 FPGWT 8.000ms - no
02:00:00:01... 03:00:00:00.. UDP 101331 22422402 B4 IFG 174.0.. - - no
02:00:00:07... 0300:00:00.. UDP 101331 22422403 64 IFG 50.00.. - - no
02:00:00:01 03:00:00:00.. UDP 101331 224722404 B4 FPGWT 16.000ms - - no
02:00:00:01... 03:00:00:00.. UDP 101331 22422405 B4 IFG 1.00... - - no
02:00:00:01... 0300:00:00.. UDP 101331 22422406 64 IFG 250.0.. - - no

[ISR N

[4

ARINCG664 / AFDX Programmer’s Guide 54

7~y
AM

RIGHT ON TARGET]

C. Replay Operation

i Physical Re-Transmission of pre-recorded network traffic (or real-time
playback of data captured while in Record mode.)

Table 1-1 defines the key features and differences between the UDP-Port Oriented transmission
mode and the Generic Transmission mode.

If your application requires the generation of AFDX traffic, this section will provide you with
the understanding of the Transmitter programming functions required for use within your
application. Regardless of the transmission mode you select, Global Transmitter functions must
be performed first. This section will describe Transmitter Functions as follows:

a. Global Transmitter Functions
4 Port Initialization & Tx Mode Setup
4 Transmission Control
4 Strobe Input/Output Usage (optional)
4 Global Transmit Status
b. UDP Port-Oriented Simulation
a Creating the Virtual Link and Sub VL UDP Port
4 Writing messages to the UDP Port
4 Individual UDP Port Error Injection, Skew
N Individual UDP Port Status and Enable/Disable
C. Generic Transmit
4 Allocating a Transmit Queue
s Defining Frames and Writing to the Transmit Queue
4 Generic Transmit Queue Status
d. Replay
4 Allocating a Transmit Queue

s Writing a Replay file to the Transmit Queue

ARINCG664 / AFDX Programmer’s Guide 55

7~y
AM

RIGHT ON TARGET]

&

Replay Transmit Queue Status.

4.2.1 Global Transmitter Functions

Global Transmitter functions are the functions that apply to all modes of operation (UDP Port-
Oriented, Generic Transmit or Replay). The major functions of the Global Transmitter functions

include:

Port Initialization & Tx Mode Setup

Transmission Control

Strobe Input/Output Usage (optional)

Global Transmit Status

These Global Transmitter function are described in the following sections.

4.2.1.1 Port Initialization and Tx Mode Setup

After the Board setup is complete, as defined in Section 4.1, an individual Transmit Port can be
initialized and the mode can be configured for either | 4
UDP Port-Oriented, Generic Transmit or Replay

Mogle l;]smgbthe funct:cc_)ns I(ljstedhbelow. Once r:he Port Tx Setup

mode has been configured, the user can then (1) Assign Portmap ID to each Tx port
program the port transmission protocol and data (2) Define Transmitter mode (UDP Port-
characteristics as defined in the section applicable to Oriented or Generic Transmit)

the mode (Section 4.2.1- 1.1.1).

a.

FdxCmdTxPortlnit - will perform initialization and reset of the Transmit port
global characteristics. This must be the first Transmitter function call issued.
The user must assign a Portmap ID to each Tx port. This Portmap ID is a
virtual 1D assigned to the physical Port. State after initialization includes:

&

No Transmit Queues defined- this is referring to the queue assigned to a
port with the FdxCmdTxQueueCreate function call (for Generic &
Replay Transmit mode).

No VL created, no UDP port created - this is referring to the VL and
port created with the FdxCmdTxCreateVL and
FAxCmdTxUDPCreatePort functions (for UDP Port-Oriented
Simulation mode)

FdxCmdTxModeControl - provides configuration for the three transmit modes
including:

ARINCG664 / AFDX Programmer’s Guide 56

7~y
AM

RIGHT ON TARGET]

4 UDP Port-Oriented Simulation - This mode simulates the AFDX
Comm and SAP UDP ports as defined by the AFDX End System Detailed
Functional Specification.

4 Generic Transmit Operation - This mode provides maximum flexibility
and is based on a frame based transmission sequence. Each frame
provides information about the relative timing between the frames, error
injection, payload-generation modes, transmission skew in redundant
operation mode and/or special events like a digital output strobe-signal.
For high-throughput, special payload-generation modes can be used, so
the hardware takes parts of the frame-data from static send-fields.
Because all frames must be pre-buffered on the hardware, the number of
frames is limited to the board-resources.

ol Send-Setup C:h..\AIM GmbHFdXplor: - IEIIﬂ
Q G\oball = Parts [Geneiic Send-Llstl

Mapdd | WL | Sro-MAC | Dst-MAC | Protosol | ScdP | DstdP | Size | StatMode | Gap | PGWT | Emcrl..| PGM | Stiobe-Out |

1 1 02000000, 03:00:00:00.. UDP 101331 22422401 B4 PGWT B000ms - - no

1 2 02000000, 03:00:00:00.. UDP 101331 22422402 64 IFG 1740, - - no

1 3 02000000, 0%0000:00.. | UDP 101331 22422403 B4 IFG 50,00 - - no

1 4 02:00:00:00... 03:00:00:00.. UDP 101331 22422404 B4 PGWT 16000ms | - - no

1 5 02.0000:00... 0300:00:00.. UDP 101331 22422405 B4 IFG 1.00.. - - no

1 3 02000000, 0%00:00:00.. UDP 101331 22422406 64 IFG 2500... - - no

[4

4 Replay Operation - Physical Re- Transmission of recorded network
traffic or (or real-time playback of data captured while in Record mode.)

The following code example uses APl S/W Library constants to initialize one port using a
Portmap equal to 1 and configures the mode to Generic Transmit. The port handle was
previously obtained using FdxLogin.

TY FDX PORT INIT IN x_PortInitIn;
TY FDX PORT INIT OUT x_PortInitout;
TY FDX TX MODE CTRL x_TxModeCtrl;
//--- Initialization
x PortInitIn.ul PortMap = 1;
if (FDX OK != (FdxCmdTxPortInit (ul HandlePort, &x PortInitIn, &x PortInitOut)))
{
printf ("Port Reset failure!!!\n");
}
else

{

printf ("Port Transmitter Initialized\n");

}

//--- mode control -> Set TX port to Generic mode
x_TxModeCtrl.ul TransmitMode = FDX TX GENERIC;
if (FDX OK != (FdxCmdTxModeControl (ul HandlePort, &x TxModeCtrl)))
{
printf ("Port Mode Control Failure!!!\n");
}
else
{
printf ("Port set to Generic Transmit mode\n");

}

ARINCG664 / AFDX Programmer’s Guide 57

7~y
AM

RIGHT ON TARGET]

4.2.1.2 Transmission Control

After all protocol and data characteristics of the port | g
have been programmed (as defined in Section 4.2.2 -
4.2.4), the method used to start/stop transmission of the St
. . art Tx
data _sh_ould be defined. There are two global functions (1) Send the AFDX frame cyclically or
providing Tx Control: a certain number of times
(2) Setup to start immediately or wait
a. FdxCmdTxControl - defines how and for start time/strobe input
when to start transmission for a
Physical port and the length of transmission including:

4 Starting/Stopping the transmitter - provides for:
1. Starting/stopping the transmitter on command
2. Starting the transmitter based on an external strobe input
3. Starting the transmitter based on a specified start time

4 Cyclic or user-specified number of transmissions for the frames
defined in the Transmit Queue when in Generic Transmit mode. (In
Replay the number of frames transmitted depends on the size of the
Replay file. In UDP Port-Oriented Simulation, the transmission rate for
an AFDX Comm port is defined by FAXCmdTxUDPCreatePort (for
Sampling port), and the transmission is initiated when data is written to
the port using FAXCmdTxUDPWrite or FAXCmdTxUDPBIlockWrite
(for a Queuing port). For a SAP port, transmission is initiated with
FAxCmdTxSAPWrite or FAXCmdTxSAPBlockWrite.)

b. FdxCmdTxVLControl - provides the user with the option to enable/disable an
individual VL as defined in either the UDP Port-Oriented Transmit mode or
Generic Transmit mode. The default condition of a VL is enabled, therefore, this
function is not required unless you choose to disable individual VLs.

Note: Lower level Sub VL (UDP Port) enable/disable control
(FdxCmdTxUDPControl) is available when in UDP Port-Oriented
Transmit mode as discussed in Section 4.2.2.3.

The following code configures a port to transmit AFDX frames cyclically
(x_TxControl.ul count = 0 (Generic Transmit mode only)) and to start immediately

upon this command.
TY FDX TX CTRL x TxControl;

x_TxControl.ul Count = 0; //0 value indicates cyclic transmission
x_TxControl.e StartMode = FDX_ START;

if (ul HandlePort != NULL)

{
if (FDX OK != (FdxCmdTxControl(ul HandlePort, &x TxControl))) {

ARINCG664 / AFDX Programmer’s Guide 58

7~y
AM

RIGHT ON TARGET

printf ("Failure to start transmitter\n");
}
else {

printf ("Transmitter started\n");

}

ARINCG664 / AFDX Programmer’s Guide 59

7~y
AM

RIGHT ON TARGET]

4.2.1.3 Trigger Input/Output Usage

As a programming option, the trigger input/output signals for the Transmitter ports can be used
in various ways to control transmission of AFDX frames or to indicate the occurrence of a
specific frame transmission as shown in Table 4-7. This table indicates the functions required to
utilize the trigger signals to control transmission of AFDX frames and in which transmit modes
these functions are applicable.

Please refer also to the hardware manual associated with the board type for information on how
to connect external devices to the trigger input/output signals of your AIM ARINC664 device.

Table 4-7 Trigger Input/Output Transmitter Functions
Applicable
mode
=
=
Function £o| S . Strobe- In Strobe-Out
52| 8 API Function .)
Type ac|gE Function Function
(S 8 o
Qo | &
= c
(b}
©)
Global X X | FdxCmdTxTrgLineControl Defines the strobe Input/Output lines to be
Transmitter used for the receive ports
Global X X | FdxCmdTxControl Strobe-in to Start
Transmitter transmitter™
Generic X | FdxCmdTxQueueWrite Strobe-in to Start Strobe-out on
Transmit transmission of this transmission of this
Operation frame * frame.

* In redundant operation mode, the strobe input for port A shall be the same strobe input
resource for Port B.

4.2.1.4 Global Transmit Status

The Global Transmitter function group includes one function
call, FAxCmdTxStatus, that provides you with the capability to
obtain the following status:

7

Retrieve Status
(1) Tx Status
(2) Rx Status
(3) Retrieve Captured data

a. Transmitter status - Stopped/Running/Error

b. Frames Transmitted - for primary and redundant port (if programmed in
Redundant mode using the FdxCmdBoardControl Board Setup function)

C. Mode - Generic Transmit, UDP Port-Oriented, or Replay.

ARINCG664 / AFDX Programmer’s Guide 60

7~y
AM

RIGHT ON TARGET]

Additional lower level status can be obtained when in UDP Port-Oriented Transmit mode by
using the function FAXCmdTxUDPGetStatus, and, when in the Generic or Replay Transmit

mode, by using FAXCmdTxQueueStatus as described in Sections 4.2.2.4, 4.2.3.3 and 4.2.4.3
respectively.

ARINCG664 / AFDX Programmer’s Guide 61

7~y
AM

RIGHT ON TARGET]

4.2.2 UDP Port-Oriented Simulation Mode

When operating in UDP Port-Oriented
Simulation mode AFDX Comm ports Appl|cat|on(s) Application(s)
(connection oriented) and SAP ports ' 4 2 '

(connectionless) are simulated.

>

The functions described in this section AFDX SAP
should be used after the port has been 3212" OO 000 OO Port
configured for UDP Port-Oriented == Layer —
Simulation using the function FdxCmdTxModeControl, as described in Section 4.2.1.1.
Setting up the port when in UDP Port-Oriented Simulation mode consists of the following main
functions:

a. Creating the Virtual Link and Sub VL UDP Port-Oriented Setup
(UDP Port) (1) Define the VL & Sub VL
characteristics
b. Writing messages to UDP Port (2) Write UDP port messages created
to Tx port
C. Individual UDP Port Error Injection, Skew

and Enable/Disable (optional)
d. Individual UDP Port Status
e. Changing the source of a UDP while transmit is enabled.

4.2.2.1 Creating the Virtual Link and Sub VL

The following functions are associated with VL and Sub VL (UDP Port) creation for a defined
port.

a. FdxCmdTxCreateVL or FdxCmdTxCreateHiResVL - these functions will
define the characteristics associated with the VL as listed in the example below.
Only one function is needed. The FAXCmdTxCreateHiResVL provides a
higher resolutionBAG as defined below. These characteristics will apply to all
SubVLs associated with the VL.

FdxCmdTxCreateVL
Network
Control
Max Frame (applicable to
Frame Buffer MAC Source Redundant
VL ID BAG Length Size Address mode only)
0 1ms 147 bytes 0 02:00:00:01:21:20 | A+B at once

ARINCG664 / AFDX Programmer’s Guide 62

7~y
AM

RIGHT ON TARGET]

BAG
4 For function
FdxCmdTxCreateVL,
BAG values are in

milliseconds: 1, 2, 4, 8,
16, 32, 64, 128. For function FAxCmdTxCreateHiResVL, higher
resolution BAG values can be specified anywhere within the range of 800
psec to 128000 psec.

v

4 Max Frame Length includes all fields shown below (except the
Preamble and Start Delimiter):

Start MAC IP UDP AFDX
Preamblq pelimiter Header Header |Heade AFDX Payload sequence] FCS

Number

Message

7 1 klz 22 8 17...1471 1 y
Y

Frame-Size

4 Frame Buffer Size - Allows the user to specify the size of the VL Buffer
(needed when using function FdxCmdTxVLWrite or
FAxCmdTxVLWriteEx. If set to 0, the target software computes the
length of this buffer.)

4 Network Control - Allows the user to specify how frames are transmitted
when in redundant mode. i.e., whether Port A/B frames are transmitted
skewed, in-sync or only Port A or only Port B.

b. There are two sets of functions associated with creation of the UDP Tx port:
AFDX Comm port functions and SAP functions as described below:

For AFDX Comm Port (Sampling or Queuing Connection-oriented port):

N FdxCmdTxUDPCreatePort - this function will define the characteristics
associated with the Sub VL AFDX Comm Sampling/Queuing port
associated with a VL as listed in the example below. These
characteristics will apply to all SubVLs associated with the VL. Up to
four Sub VLs can be defined for one VL. A UDP Handle to this UDP
Port Sub VL is returned when this command is issued successfully. The
handle is used for all further communication/control of the Sub VL
(AFDX Comm UDP Port). An AFDX Comm port is connection-oriented,
therefore, the entire address quintuplet is specified for the create port
function to define the point-to-point connection.

ARINCG664 / AFDX Programmer’s Guide 63

7~y
AM

RIGHT ON TARGET]

FdxCmdTxUDPCreatePort

(Sampling Number of
Sampling Destination | Source | Destination Maximum buffered
Sub VL ID| Queuing) Rate Source IP 1P UDP UDP Message Size | messages
1 Sampling 10 ms 10.1.33.1 |224.224.0.0 1 1 100 bytes 1
2 Sampling| 10 ms 10.1.33.1 |224.224.0.0 2 2 90 bytes 1
3 Sampling [10 ms 10.1.33.1 [224.224.0.0 3 3 80 bytes 1
4 Queuing 10.1.33.1 |224.224.0.0 4 4 max. 8000 bytes 3

Sampling Rate - values start with 1 milliseconds in multiples of 1. This
is the rate at which the AFDX frame will be transmitted cyclically
at a Sampling Port.

Maximum Message Size - the size of the AFDX Payload Message. The
size is fixed for Sampling ports. For queuing ports, it is the
maximum size of the complete message to be fragmented and
transmitted out the queuing port.

Number of Buffered Messages - for a Sampling Port this is always 1.
For a Queuing Port, this indicates the number of complete
messages (with size = to max Message size) that may be buffered

for transmission. The default value is 2.

The following code creates one VL (VL 33) and two Sub VLs (UDP port 1 and UDP port 2)
both configured as Sampling ports.

//--- create VL, define communication parameters for VL 33 on Port
x_TxCreateVL.ul V1Id = 33; /* VL */
x_TxCreateVL.ul SubVls = 1; /* Number of Sub VLs */
x TxCreateVL.ul Bag = 32; /* BAG [ms] */
x_TxCreateVL.ul MaxFrameLength = 1000; /* Maximum Frame Length [bytes] */
x TxCreateVL.ul FrameBufferSize = 0; /* Default Frame Buffer Size */
x TxCreateVL.ul MACSourceLSLW = 0x00089%aC0; /* MAC Source */
x TxCreateVL.ul MACSourceMSLW = 0x00000200; /* MAC Source */
x_TxCreateVL.ul_NetSelect = FDX TX FRAME BOTH;
x TxCreateVL.ul Skew = 0;
if (FDX OK != (FdxCmdTxCreateVL (ul Handle, &x TxCreateVL))) {
printf ("VL Creation on Port failed!!!\n");
}
else {
printf ("VL Created 33 \n");
}
//--- create udp-port 1 for write on Port
x_ TxUDPDescription.ul PortType = FDX UDP_SAMPLING; /* Sampling Port */
x TxUDPDescription.x Quint.ul UdpSrc = 23;
x TxUDPDescription.x Quint.ul UdpDst = 24;
x TxUDPDescription.x Quint.ul V1Id = 33;
x TxUDPDescription.x Quint.ul IpSrc = ul GenerateIp("10.1.33.1");
x TxUDPDescription.x Quint.ul IpDst = ul GeneratelIp("224.224.0.33");
x TxUDPDescription.ul SubV1Id = 1;
x TxUDPDescription.ul UdpMaxMessageSize = 200;
x TxUDPDescription.ul UdpNumBufMessages = 1; /* 0=default */
x TxUDPDescription.ul UdpSamplingRate = 100; /* [ms] */
ARINCG664 / AFDX Programmer’s Guide 64

7~y
AM

RIGHT ON TARGET]

if (FDX OK != (FdxCmdTxUDPCreatePort (ul Handle, &x TxUDPDescription,
B ‘gul_UdplHandle)))
{
printf ("UDP Port Creation Failure on Port!!!\n");
}
else
{
printf ("Tx UDP Port 1 Created.);
}

//-=-- create udp-port 2 for write on Port
x_TxUDPDescription.ul PortType = FDX UDP_SAMPLING; /* Sampling Port */

x TxUDPDescription.x Quint.ul UdpSrc 34;
x TxUDPDescription.x Quint.ul UdpDst 42;
x TxUDPDescription.x Quint.ul V1Id 33;

x TxUDPDescription.x Quint.ul IpSrc
x TxUDPDescription.x Quint.ul IpDst
x TxUDPDescription.ul SubV1Id

ul GenerateIp("10.1.33.1");
ul GeneratelIp("224.224.0.33");
1;

x TxUDPDescription.ul UdpMaxMessageSize 300;

x_TxUDPDescription.ul UdpNumBufMessages 1; /* O0=default */
x TxUDPDescription.ul UdpSamplingRate 50; /* [ms] */

if (FDX OK != (FdxCmdTxUDPCreatePort (ul Handle, &x TxUDPDescription,

&ul Udp2Handle)))
{

printf ("UDP Port Creation Failure on Port!!!\n");

}

else

{
printf ("Tx UDP Port 2 Created.);

}

For SAP Port (Connectionless-oriented port):

a FdxCmdTxSAPCreatePort - this function will define the characteristics
associated with the Sub VL SAP port. Up to four Sub VLs can be
defined for one VL. A UDP Handle to this UDP Port Sub VL is returned
when this command is issued successfully. The handle is used for all
further communication/control of the Sub VL (UDP Port). The
characteristics for the SAP Tx port include only those listed below.
Remember, for a SAP port - since the port is "connectionless” it can
transmit to multiple E/S's and the destination is determined at the time of
transmission, therefore, only the Source IP/UDP addresses are required.

ARINCG664 / AFDX Programmer’s Guide 65

7~y
AM

RIGHT ON TARGET]

FdxCmdTxSAPCreatePort

Number off
Maximum Message| buffered
SubVLID| SourcelP |Source UDP Size messages
1 10.1.33.1 1 max. 8000 bytes 3
2 10.1.33.1 2 max. 8000 bytes 2
3 10.1.33.1 3 max. 8000 bytes 4
4 10.1.33.1 4 max. 8000 bytes 3

Maximum Message Size - the size of the AFDX Payload Message. For
SAP ports, it is the maximum size of the complete message to be
fragmented and transmitted out the port.

Number of Buffered Messages - For a SAP Port, this indicates the
number of messages (with size = to max Message size) that may
be buffered for transmission at any time. The default value is 2.

4.2.2.2 Writing Messages to the Port

Now that the MAC Header, IP Header and UDP Header have been defined, it is time to define
the data to be inserted into the AFDX Payload message portion of the AFDX frame.

S_tar_t MAC IP UDP AFDX Pavload Sequencqg
Preamblq pelimiter, Header Header Headef Messa{)e Number| FCS
bytes 7 1 14 20 8 17...1471 1 4

There are two sets of functions for writing messages to the port - one for AFDX Comm ports
and one for SAP ports as defined in the following two sections.

4.2.2.3 Writing Messages to the AFDX Comm Port

For AFDX Comm ports, writing AFDX Payload messages to the AFDX frame is accomplished
using the FAXCmdTxUDPWrite or FAXCmdTxUDPBlockWrite functions. These functions
can be executed while the transmitter is enabled (or disabled), but should be performed after
FdxCmdTxUDPCreatePort has been executed and a UDP Port handle obtained from that
function. The size of the message written to the port must be less than or equal to the Maximum
Message Size defined when creating the UDP port using FdxCmdTxUDPCreatePort.
FAXxCmdTxUDPBlockWrite performs in the same manner as FdxCmdTxUDPWrite,
however, it allows the user to write to multiple ports with one function call. The transmission of
the message written to the port varies for a Sampling and Queuing Port as follows:

ARINC664 / AFDX Programmer’s Guide 66

7~y
AM

RIGHT ON TARGET]

a. Sampling Port

&

FdxCmdTxUDPWrite or FAxCmdTxUDPBIlockWrite should be called
before the port is started (using FAxCmdTxControl) in order to initialize
the data contents of the UDP message buffer.

If the message written to the port(s) is smaller than the Maximum
Message Size defined with FdxCmdTxCreatePort, the remaining bytes
at the end of the UDP Buffer (with size equal to Maximum Message Size)
will not be overwritten. (Remember - only one message can be written to
a sampling port at a time.)

AFDX Frame will be transmitted at the Sampling Rate once the port is
started (using FAXCmdTxControl)

If the message is to be updated each time the AFDX data frame is
transmitted, the FAXCmdTxUDPWrite or FdxCmdTxUDPBlockWrite
should be performed at the same sampling rate defined using
FdxCmdTxUDPCreatePort.

b. Queuing Port

&

&

&

FdxCmdTxUDPWrite / FdxCmdTxUDPBIlockWrite initiates the
transmission of the message(s).

More than one message can be written to the queuing port using the
FdxCmdTxUDPBlockWrite function. Care should be taken to insure
that the number of messages written to the port does not exceed the
Message Buffer size defined with FAXCmdTxUDPCreatePort.

The transmission of the entire message may require multiple AFDX frame
transmissions (fragmentation will be by IP layer).

The following code inserts a byte pattern of “050505...” into the AFDX Payload message
portion of the AFDX frame. The UDP Port Handle is obtained from the
FdxCmdTxCreatePort function.

//Write message to UDP Tx Port

/* create Data */

ul ByteCount = 100;
for (i=0; i<ul ByteCount; i++)
uc Data[i]=(AiUInt8)5;

if (FDX _OK !=

(

FdxCmdTxUDPWrite (ul Handle, aul UDPHandles[ul HandleCnt],

ul ByteCount, uc Data, &ul BytesWritten)))

{

printf ("FdxCmdTxUDPWrite failed!!!\n");
return (FDX ERR) ;

}

else

{

printf ("FdxCmdTxUDPWrite () ul BytesWritten:%1d", ul BytesWritten);

ARINCG664 / AFDX Programmer’s Guide 67

7~y
AM

RIGHT ON TARGET]

Note:

An alternative method of writing data to the port involves the use of the function
FdxCmdTxVLWrite or FAxCmdTxVLWriteEx. These functions allow the user to write
entire AFDX frames to the VL Buffer, therefore, providing maximum flexibility as to
the content of the port's transmit output. When using this function, the UDP
functions used to Create (FdxCmdTxUDPCreatePort), Destroy
(FAxCmdTxUDPDestroyPort), Write (FAXCmdTxUDPWrite), Control
(FdxCmdTxUDPControl) and Get Status (FdxCmdTxUDPGetStatus) are not applicable.

ARINCG664 / AFDX Programmer’s Guide 68

7~y
AM

RIGHT ON TARGET]

4.2.2.4 Writing Messages to the SAP Port

For SAP ports, writing AFDX Payload messages to the AFDX frame is accomplished using the
FdxCmdTxSAPWrite or FAxCmdTxSAPBlockWrite functions. These functions can be
executed while the transmitter is enabled (or disabled), but should be performed after
FdxCmdTxSAPCreatePort has been executed and a UDP Port handle obtained from that
function. The size of the data written to the port must be less than or equal to the Maximum
Message Size (maximum is 8Kbytes) defined when creating the UDP port using
FdxCmdTxSAPCreatePort. FdxCmdTxSAPBlockWrite performs in the same manner as
FdxCmdTxSAPWrite, however it allows the user to write AFDX message(s) (can be unique
for each port) to multiple ports with one function call. Transmission considerations for a SAP
port are as follows:

a. FdxCmdTxSAPWTrite / FAXCmdTxSAPBIlockWrite initiates the transmission
of the message(s).

b. More than one message can be written to the SAP port using the
FdxCmdTxSAPBIlockWrite function. Care should be taken to insure that the
number of messages written to the port does not exceed the Message Buffer size
defined with FAxCmdTxSAPCreatePort.

C. The transmission of the entire message may require multiple AFDX frame
transmissions (fragmentation will be by IP layer).
4.2.2.5 Individual UDP Port Error Injection, Skew and Enable/Disable

The function FdxCmdTxUDPControl provides the lowest level UDP port control available to
manipulate the individual Sub VLs (UDP ports) in the following manner:

Note: This function requires that the Transmit Port has been enabled via FdxCmdTxControl
function and the VL has not been disabled via the FdxCmdTxVLControl function. The
FdxCmdTxUDPControl is the lowest level port control function available, therefore, all
higher level functions (FdxCmdTxControl & FdxCmdTxVLControl) will supersede the
Sub VL UDP port level control imposed with FdxCmdTxUDPControl.

a. Inject errors for a certain number of AFDX frames, or cyclically, as defined in
Table 4-8.

ARINCG664 / AFDX Programmer’s Guide 69

7~y
AM

RIGHT ON TARGET]

Table 4-8 Physical Error Injection
Error Type Description:
CRC Error CRC Error transmitted with this frame
Byte Alignment Error Wrong Byte alignment in transmit frame,

which means that an odd number of
nibbles will be transmitted. Therefore, this
error will also cause a CRC error
condition.

Preamble Error Wrong Preamble Sequence transmitted. If
this type is selected, the Encoder device
substitutes the first nibble of the Start
Frame Delimiter with the value ‘1000’
instead of ‘10071’

Physical Symbol (‘HALT") Physical Symbol Error. During Frame
Error Transmission, the MAC-Encoder device
asserts the Tx-Error signal, which forces
the physical transceiver to transmit ‘HALT’
symbols.

b. For ports setup in redundant mode, skew by a user specified value or
enable/disable the primary/redundant port's frame transmission as defined below
and shown in Figure 4-3:

4 Packet on Network A is delayed by the Skew value, related to Network B

Packet on Network B is delayed by the Skew value, related to Network A

4 Packet transmitted on both Networks (Skew=0)
4 Packet only transmitted on Network A
4 Packet only transmitted on Network B
Figure 4-3 Redundant Network Frame Transmission Options

Port A 1 2 ¢ IFG fu%zﬁjée;/ 4 ¢ IFG 5 N

Skew Skew Skew

=00 [[~

Port B

PGWT . PGWT PGWT

Note: ~ The Skew Value between two redundant frames is defined with a resolution of 1 microsecond. Therefore, if the
following frame pair is scheduled by an Interframe Gap, the resolution of the Interframe Gap timer is decreased from
1 GTU up to 1 microsecond.

ARINCG664 / AFDX Programmer’s Guide 70

7~y
AM

RIGHT ON TARGET]

C. Enable/Disable individual UDP ports.

Note:

Disabling/enabling the UDP port via FdxCmdTxControl, FdxCmdTxVLControl,
FdxCmdTxUDPControl will not reset the error or skewing conditions previously
configured. To disable error injection or skew at an individual UDP port, the user
must issue the FdxCmdTxUDPControl function with parameters set as required.

4.2.2.6 Individual UDP Port Status

The function FdxCmdTxUDPGetStatus provides the lowest level UDP port status information
available including:

a. Message Count - Count of messages sent through this UDP port since the
transmitter was started.

4.2.2.7 Changing the Source ID of a UDP Port

The function FAXCmdTxUDPChgSrcPort provides the user with the ability to change the
port's source ID while transmitting data. This functionality might be used if the application
included simulation of a server.

ARINCG664 / AFDX Programmer’s Guide 71

7~y
AM

RIGHT ON TARGET]

4.2.3 Generic Transmit Mode

When operating in Generic Transmit Mode, the user is provided with the capability to define
each individual frame and the sequence of the frame to be transmitted by the port. Each frame
defined provides information about the relative timing between the frames, error injection,
payload-generation modes, transmission skew (in redundant operation mode) and/or special
events like a digital output strobe-signal. For high-throughput, special payload-generation
modes can be used, so the hardware takes parts of the frame-data from static send-fields.
Because all frames wreeremrmrrrs

-0l x|
must be pre_ @ Giobal| & Pors E Gener Sencdist |
Mapld | WL | GeMAC | Det-MAC | Protosol | SedF | DstdP | Gize | StatMade | Gap | FGWT | Erarl.. | PGM | Shabe-Out |
buffered on the 1 020000:07. 03000000 UDP 101331 27422401 64 PGWT a000ms - - o
1 2 02:00:00:01.. 03000000, UDP 101331 22422402 B4 IFG 174.0... . . no
hardware the 1 3 0Z0000:0... 03000000 UDP 101337 Z2AZ2A03 B4 IFG 50.00.. . . o
! . 1 4 0200:00:01.. 03000000, UDP 101331 22422404 B4 PGWT 16000ms - - no
1 5 02:00.0001.. 0300.00.00.. UDP 101331 22422405 B4 IFG 1.00. . . no
number Of frames IS 1 3 02:00:00:01.. 03000000, UDP 101331 22422406 B4 IFG 250.0... - - no

limited to the board-
resources.

The functions described in this section should be used after the port has been configured for
Generic Transmit mode using the function FAxCmdTxModeControl, as described in Section
4.2.1.1. Setting up the port when in Generic Transmit mode is basically a two step process with
a function provided for statusing as described in the following sections:

. : Generic Transmit Setup
a. Allocating a Transmit Queue (1) Allocate queue for the storage of
.. .. the frames to be transmitted.
b. DEfm'ng the Frames / Writing to the (2.1) Define the attributes (non-data)
Transmit Queue of the generic Tx frame
(2.2) Insert the data into the generic
..and once the transmit port is enable via Tx Frame _
FdxCmdTxControl as defined in Section | (2-3) Write the Frame attributes and
49212 the Frame data to the Tx Queue
C. Transmit Queue Status

4.2.3.1 Allocating a Transmit Queue

Allocation of the transmit queue involves the function FAxCmdTxQueueCreate. For Generic
Transmit mode, this function basically defines a queue and the size of the queue to be used to
transmit the frames that will be defined by the function FAXCmdTxQueueWrite. The size of
the queue will depend on the number of generic transmit frames required for transmission.
Remember, these frames can be transmitted cyclically or a user-specified number of times as
defined with the Global Transmit function, FdxCmdTxControl (Section 4.2.1.2).

ARINCG664 / AFDX Programmer’s Guide 72

7~y
AM

RIGHT ON TARGET]

4.2.3.2 Defining the Frames / Writing to the Transmit Queue

The next steps are to define one or more AFDX frames then write the entire list of AFDX
frames to the Transmit Queue using the function FAXCmdTxQueueWrite. Each frame entry
to the queue will include the following:

a. Frame Attributes - define the manner in which the frame should be transmitted
on the network. User-specifiable variables include those listed in Table 4-9.

b. Frame Content - 64 - 1518 bytes of frame data beginning with the MAC Header
and ending with the FCS. MAC Header through the AFDX Payload message is
defined by the user. The frame content required for definition depends upon the
Payload Generation mode (See Table 4-10) selected for the frame attributes.

Start MAC 1P UDP SequencH
tar AFDX Payload q
Preambl g pelimiter] Header Header Headel Messa);e Number| FCS
bytes 7 1 14 20 8 17...1471 1 4

— AN J

V Y
Frame Content specified by the Frame Content
user (depending on Payload computed by firmware

Generation mode)

As you can see, there are many different combinations allowed for the definition of each AFDX
Frame. Multiple AFDX frames can be defined in the Transmit Queue (taking care that the
Transmit Queue size defined in FAxCmdTxQueueCreate can hold all frames defined) using
one FAxCmdTxQueueWrite function call. Additional frames can be added to the Transmit
Queue with additional FAxCmdTxQueueWrite function calls, however, the port transmission
must be disabled. The new entries will always be queued at the end of the transmit queue. To
purge the Transmit Queue of all frames, the port must be reinitialized using the
FdxCmdTxPortlnit function.

ARINCG664 / AFDX Programmer’s Guide 73

7~y
AM

RIGHT ON TARGET]

Table 4-9

Frame Attributes for Generic Transmit Frames

Frame Attribute

Description

Frame Size

Total size of the associated frame in Bytes (including FCS).
(64-1518 bytes)

Payload Generation Mode

Defines AFDX frame fields that will be inserted by the MAC-
Hardware from the static Tx data registers (setup using
FdxCmdTxStaticRegsCtrl). See Table 4-10 for Payload
Generation Mode options.

Frame Start Mode

Starts transmission of this frame on one of three conditions (See
Figure 4-4):
- when user-specified InterFrame Gap (IFG)* time has
expired
- when user-specified Packet Group Wait Time (PGWT)**
has expired
- on external Trigger Strobe (See Section 4.2.1.3for Strobe
Setup)

*Gap between the end of the preceding frame and the current
frame (resolution of 40ns). Range = 120 ns to approx. 655psec.

** The time from the transmission start point of the last frame
where the PGWT value is processed to the start point of the
current frame with a resolution of 1us.

External Strobe

Enables/Disables output of external Strobe on transmission of
this frame (See Section 4.2.1.3 for Strobe Setup)

Preamble Count

Varies the number of preamble Bytes (default 7 bytes)

Physical Error Injection

Same Physical Error Injection capabilities as defined for UDP
Port-Oriented Simulation mode as shown in Table 4-8. (CRC
Error, Byte Alignment Error, Preamble Error, Physical Symbol
('HALT") Error)

Sequence Number Control

Starting Sequence Number can be defined by the user. The
offset added to the sequence number for each frame can also be
specified.

Redundant Mode Network
Select / Skew

For Redundant mode:

Packet on Network A is delayed by the user-defined Skew*
value, related to Network B

Packet on Network B is delayed by the user-defined Skew*
value, related to Network A

Packet transmitted on both Networks (Skew=0)

Packet only transmitted on Network A

Packet only transmitted on Network B

*Skew can be programmed with a resolution of 1psec. Range is
0...65535 psec.

ARINCG664 / AFDX Programmer’s Guide 74

7~y
AM

RIGHT ON TARGET]

Table 4-10 Payload Generation Mode Frame Content Source
I Frame Content I

From Static Registers

Payload
Generation
Mode

No Payload
Generation

From User

User must provide
complete frame

Frame Data

None

IP Partial

MAC/IP/UDP Header
(minus fields provided

by Static Registers)

MAC Destination
MAC Source
MAC Type/Length
IP Version

IP Protocol Field
UDP Checksum
UDP Payload

3-5

complete
complete
complete
complete
complete

IP Full

MAC Header

(minus fields provided

by Static Registers)

MAC Destination
MAC Source
MAC Type/Length
IP Header

UDP Header

UDP Payload

2-5
3-5
complete
complete
complete
complete

IP Partial +
Timetag

same as IP Partial

same as IP Partial
+

UDP Payload
Timetag

IP Full +
Timetag

same as IP Full

same as IP Full
+

UDP Payload
Timetag

ARINC664 / AFDX Programmer’s Guide

75

7~y
AM

RIGHT ON TARGET]

Figure 4-4 Packet Group Wait Time & Interframe Gap

4 strobe In

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5
StartMode = IFG StartMode = PGWT StartMode = PGWT StartMode=Strobe
IFG=T2 PGWT=T3 PGWT=T4 PGWT=dont care
PGWT=dont care IFG=dont care IFG=dont care IFG=dont care

Start sending TimeP

KPIease note that the minimal
granted packet group wait
time of a frame (i.e Frame 3)
depends on the actual size of
the preceding frame (i.e
Frame 2).

When you define packet Frame-Size 10 Mbps 100 Mbps
LTy ML 3 T 19 31.20 pSec 3.12pSec
interframe-gap time you
should pay attention to 64 67.20 pSec 6.72 pSec
these frame-durations.

1230.00 pSec 123.00 pSec
1616.00 uSec 161.60 pSec

(x +20)*0.80 pSec | (x +20)*0.08 pSec

_

/20 bytes must be \

added to the pure Additional Bytes 10 Mbps 100 Mbps

frame-size,

because every Preamble (7) 5.60 pSec 0.56 uSec

frame begins with —
a preamble (7 Start Delimiter (1) 0.80 pSec 0.08 pSec

bytes) and a start-
delimiter (1 byte)
and should have a
minimal
interframe-gap
(12 bytes).

min. Interframe gap (12) | 9.60 pSec 0.96 puSec

J

ARINCG664 / AFDX Programmer’s Guide 76

7~y
AM

RIGHT ON TARGET

The following code creates one Transmit Queue, and, for one AFDX frame, defines the frame
attributes and content and writes the frame into the Transmit Queue. The AFDX Payload
message is initialized to ASCII characters A-Q.

TY FDX TX MODE CTRL x TxModeControl;
TY FDX TX_ QUEUE_SETUP x TxQueueCreate;
TY FDX TX QUEUE INFO x TxQueueInfo;
struct my Frame tag {
TY FDX TX FRAME HEADER x Frame;
AiUInt8 uc Data[l1000];
} My Frame;
AiUInt8 Dt[100];

printf ("\n FdxCmdTxQueueCreate...");
x TxQueueCreate.ul QueueSize = 0; //When using size 0, the internal default
//queue size will be used.
if (FDX OK!=(FdxCmdTxQueueCreate (ul Handle, &x TxQueueCreate, &x TxQueuelnfo)))
{
printf ("FdxCmdTxQueueCreate failed!!!\n");
}
else
{
printf ("FdxCmdTxQueueCreate done.\n");
}

//--- Create Frame for the Tx Queue

My Frame.x Frame.uc FrameType = FDX TX FRAME STD;

My Frame.x Frame.x FrameAttrib.uc NetSelect = FDX TX FRAME BOTH;

My Frame.x Frame.x FrameAttrib.uc ExternalStrobe = FDX DIS;
My_Frame.X_Frame.x_FrameAttrib.uc_FrameStartMode = FDX TX FRAME START PGWT;
My Frame.x Frame.x FrameAttrib.uc PayloadBufferMode = FDX TX FRAME PBM STD;

My Frame.x Frame.x FrameAttrib.uc PayloadGenerationMode = FDX TX FRAME PGM USER;
//no payload generation - all frame data defined by the user in this frame

My Frame.x Frame.x FrameAttrib.uc PreambleCount = FDX TX FRAME PRE DEF;

My Frame.x Frame.x FrameAttrib.ul BufferQueueHandle = 0;//used when payload buffer
//mode is not standard

My Frame.x Frame.x FrameAttrib.ul InterFrameGap = 25; // 25=lusec;*/

My Frame.x Frame.x FrameAttrib.ul PacketGroupWaitTime = 1000; // 1000=1msec*/

My Frame.x Frame.x FrameAttrib.ul PhysErrorInjection = FDX TX FRAME ERR OFF;

My Frame.x Frame.x FrameAttrib.ul Skew = 0; // redundant mode only

My Frame.x Frame.x FrameAttrib.uw FrameSize = 64; //bytes (includes CRC)

My Frame.x Frame.x FrameAttrib.uw SequenceNumberInit = FDX TX FRAME SEQ INIT AUTO;

My Frame.x Frame.x FrameAttrib.uw SequenceNumberOffset = FDX TX FRAME SEQ OFFS AUTO;

/* --— Frame 1 --- VL 60 */

us_FrameCount = 64;

//---MAC Dst= 0x03000000003c (VL 60)
Dt[0]=0x03;Dt[1]=0x00;Dt[2]=0x00;Dt[3]=0x00;Dt[4]=0x00;Dt[5]=0x3c;
//-—--MAC Src= 0x020000012120
Dt[6]=0x02;Dt[7]=0x00;Dt[8]=0x00;Dt[9]=0x01;Dt[10]=0x21;Dt[11]=0x20;
//---MAC Type/Length

t[12]1=0x08;Dt[13]1=0x00;

//---1P Header (Version/IHL, Type of service, Total length, Fragment ID,
// Time to live, Protocol, Header Checksum)
Dt[14]=0x45;Dt[15]=0x00;Dt[16]=0x00;Dt[17]1=0x2d;Dt[18]=0x00;Dt[19]1=0x00;
Dt[20]=0x40;Dt[21]1=0x00;Dt[22]=0x01;Dt[23]=0x11;Dt[24]=0x6d;Dt[25]=0xa2;
//---1IP Source Address 10.001.33.1
Dt[26]=0x0a;Dt[27]=0x01;Dt[28]=0x21;Dt[29]=0x01;

//—-—-1IP Destination Address 224.224.0.60 (VL 60)

Dt [30]=0xe0;Dt[31]=0xe0;Dt[32]=0x00;Dt[33]=0x3c;

ARINC664 / AFDX Programmer’s Guide 77

2

RIGHT ON TARGET]

//-—--UDP Source Port = 24
Dt[34]=0x00;Dt[35]=0x18;
//---UDP Dest Port = 23
Dt[36]=0x00;Dt[37]1=0x17;
//---UDP Length = 25
Dt[38]=0x00;Dt[39]1=0x19;
//-—--UDP Checksum
Dt[40]=0x00;Dt[41]1=0x00;

//---AFDX Payload

Dt [42]=0x41;Dt[43]=0x42;Dt[44]=0x43;Dt[45]=0x44;Dt[46]=0x45;

]
Dt[47]=0x46;Dt[48]=0x47;Dt[49]=0x48;Dt[50]=0x49;Dt[51]=0x4a;
Dt [52]=0x4b;Dt[53]=0x4c;Dt[54]=0x4d;Dt[55]=0x4e;Dt[56]=0x4f;
Dt [57]=0x50;Dt[58]=0x51;

for (1 =0 ; i< 59; 1i++)
My Frame.uc Data[i] = (unsigned char) Dt[i];

if (FDX OK!=(FdxCmdTxQueueWrite (ul Handle, FDX TX FRAME HEADER GENERIC
,1,sizeof(My_Frame),&My_Frame)))

{
printf ("FdxCmdTxQueueWrite failed!!!\n");

}

else

{
printf ("FdxCmdTxQueueWrite done.\n");

}

4.2.3.3 Generic Transmit Queue Status

One status function is provided, FAxCmdTxQueueStatus, which will indicate the following
while in Generic Transmit mode:

a. Run Status - indicates that frames have been written to the queue and the
transmitter is up and running.

b. Frames Sent - the number of frames transmitted

C. Frames in the Transmit Queue - the number of frames written to the queue.

ARINCG664 / AFDX Programmer’s Guide 78

7~y
AM

RIGHT ON TARGET]

4.2.4 Replay Transmit Mode

When operating in Replay Transmit Mode, the user is provided with the capability to replay
previously recorded data or playback data being captured real-time while in Chronologic
Receive mode. (See Section 4.3for instructions on how to setup for Record Capture mode.)
Replay mode does not reproduce any physical error conditions detected when the data was
recorded, but protocol errors as well as size violations are replayable as listed in Table 4-11. A
packet will be discarded by the firmware if any of the Non-replayable error conditions are
detected in the replay data.

Table 4-11 Errors Replayable/Not Replayable

Error Definition Symbol

Wrong physical Symbol during frame reception. PHY

*g Wrong Preamble/Start Frame Delimiter received. PRE
2 Unaligned Frame length received TRI

. 8 [MAC CRC Error. CRC
S o |Short Interframe Gap Error (<960ns) IFG
= s Frame without valid Start Frame Delimiter received SFD
AFDX IP Framing Error (AFDX-IP frame specific settings violated). IPE

AFDX MAC Framing Error (AFDX-MAC frame specific settings violated). | MAE

k) Long Frame Received (> 1518 Bytes up to 2000 bytes) LNG

2 Short Frame Received (40 to < 64 Bytes) SHR
E‘ VL specific Frame size Violation VLS
& | Sequence No. Mismatch SNE

o Traffic Shaping Violation TRS

*Note: The packet will be discarded by the firmware if any of the Non-replayable error
conditions are detected in the replay data

The functions described in this section should be used after the port has been configured for
Replay Transmit mode using the function FAxCmdTxModeControl, as described in Section
4.2.1.1. Setting up the port for Replay Transmit mode is basically a two step process with a
function provided for statusing as described in the following sections:

. : Replay Transmit Setup
a. Allocating a Transmit Queue (1) Allocate queue for the storage of
. . the frames to be transmitted.
b. Writing the Replay data to the Transmit | (o) write the Replay file address to
Queue the Tx Queue
C. Transmit Queue Status

4.2.4.1 Allocating a Transmit Queue

Allocation of the transmit queue involves the function FAXCmdTxQueueCreate. For Generic
Replay mode, this function basically defines a reloadable queue and the size of the queue. The
size of the queue will depend on:

ARINCG664 / AFDX Programmer’s Guide 79

7~y
AM

RIGHT ON TARGET]

a. the Replay file size, when transmitting a pre-recorded file. Remember, this
replay file can be setup to be transmitted at a specific start time, on an external
strobe input or immediately as defined with the Global Transmit function,
FdxCmdTxControl (Section 4.2.1.2).

b. the amount of data read from the Monitor Queue to be written to the Transmit
Queue, for play-back of real-time data being captured.

4.2.4.2 Writing a Replay File to the Transmit Queue

The next step is to write the replay data entries to the Transmit Queue. If writing a replay file,
the address and size of the replay file will be indicated, using the function
FdxCmdTxQueueWrite. If writing real-time data from the Monitor Queue, the address and
size of the Monitor Queue entries will be indicated. The Transmit Queue can be reloaded with
Replay entries by issuing additional FAxCmdTxQueueWrite function calls, even while the
port is enabled and transmitting data. The new Replay file entries will always be queued at the
end of the transmit queue.

4.2.4.3 Replay Transmit Queue Status

One status function is provided, FAxCmdTxQueueStatus, which will indicate the following
while in Replay Transmit mode:

a. Empty Transmit Queue - indicates transmit queue is created, but no Replay
frame entries have been entered.

b. Partially Full Transmit Queue - the transmit queue is partially filled with
Replay frame entries.

C. Full Transmit Queue - the transmit queue is full.

d. All Frames Sent - All replay frame entries sent to the transmit queue have been
sent.

e. Run Status - indicates that frames have been written to the queue and the

transmitter is up and running.

f. Frames Sent - the number of frames transmitted

ARINCG664 / AFDX Programmer’s Guide 80

7~y
AM

RIGHT ON TARGET]

4.3 Receiver Programming

The AFDX receive port can be configured in one of two receive modes as listed below:

a. VL-Oriented Receive Operation - In this receive mode the UDP Port can
receive and store messages for either "connection™ oriented (AFDX Comm Ports)
or "connectionless"” oriented (SAP) ports. The Receive AFDX Comm ports are
characterized by the address-quintuplet, (VL, Src.-IP, Dst.-IP, Src.-UDP, Dst.-
UDP), each with its own message storage area. For an AFDX Comm port in this
mode, the user must specify the exact address quintuplet in order for the VL
frames to be captured. SAP receive ports, however, may receive AFDX messages
from multiple sources. Therefore, the user only specifies the VL and UDP/IP
destination address in order for the VL frames to be captured. The source of the
AFDX frame is only determined after the message has been received. Trigger
capability is not provided in this receive mode.

b. Chronological Receive Operation (Monitor Mode) - In this receive mode all
VL data streams are captured and the captured frames are stored in a single
memory buffer. The user can specify additional VL filters/checking to be
performed if desired. This mode provides for recording/saving the captured data
for replay. The following four capture modes define what data is captured and
when data capture begins:

a SingleShot-Standard

In this mode, each port uses a pre-defined onboard-memory area
(singleshot-memory) for capturing frames. After this memory is filled
with frames, no more frames will be stored. The size of singleshot-
memory depends on your board type and RAM size. Trigger Control
Blocks (TCBs) can be used in this mode to define the trigger condition
that will start data capture (default capture start is when a frame is
received) and how much "pre-trigger data" is to be stored in the monitor
buffer.

4 SingleShot-Selective
This mode is very similar to SingleShot-Standard mode, but Trigger-
Control-Blocks are used for filtering, i.e. what data will be captured.
Before a frame is saved in the SingleShot-memory, it will be evaluated
using the active TCB. Only those frames which meet the TCB condition
will be saved.

4 Continuous
In this mode, the SingleShot-memory is used as a ring-buffer. As soon
as the memory is full, old frames will be overwritten with new frames
(wrap-around). Trigger Control Blocks can be used in this mode to
define the trigger condition that will start data capture (default capture
start is when a frame is received).

ARINCG664 / AFDX Programmer’s Guide 81

7~y
AM

RIGHT ON TARGET]

4 Record
In this mode, the monitor buffer is organized in the same way as in
Continuous mode. However, the frames will be written directly to a
user-specified file or directly to an output port configured for replay.
Trigger Control Blocks can be used in this mode to define the trigger
condition that will start data capture (default capture start is when a frame
IS received).

Table 3-2 defines the key features and differences between the Chronologic and VL-Oriented
receive modes.

If your application requires the reception and processing of AFDX traffic, this section will
provide you with the understanding of the receiver programming functions required for use
within your application. Regardless of the receive mode you select, global receiver functions
must be called first. This section describes receiver functions as following:

a. Global Receiver Functions
4 Port Initialization & Rx Mode Setup
4 Reception Control
4 Strobe Input/Output Usage (optional)
a Global Receiver Status
b. VL-Oriented Receive Operation
4 Defining the VL and UDP Port to be Monitored/Captured
a Reading messages from the UDP Port
a Individual UDP Port Status
C. Chronological Receive Operation (Monitor Mode)
4 Defining the Capture mode

Allocating the Monitor Queue

4 Additional VL Filter Capability
4 Creating Trigger Conditions
4 Reading the Captured Data.

ARINCG664 / AFDX Programmer’s Guide 82

7~y
AM

RIGHT ON TARGET]

43.1 Global Receiver Functions

Global receiver functions are the functions that apply to all modes of operation (VL-Oriented
and Chronological modes). The major functions of the global receiver include:

a. Port Initialization & Rx Mode Setup
b. Reception Control

C. Strobe Input/Output Usage (optional)
d. Global Receiver Status.

The following sections describe the above global receiver functions.

4.3.1.1 Port Initialization and Rx Mode Setup

After board setup (see section 4.1.1) is complete, an individual receive port can be initialized
and the mode can be configured for either VL-Oriented

. . . i 4

or Chronological receive mode using the functions
listed below. Once the mode has been configured the
user can then program the receive processes as defined Port Rx Setup
. prog . . P . (1) Assign Portmap ID to each Rx port
in the corresponding sections of this document (2) Define receiver mode (VL-Oriented
(Section 4.3.1.1 - 4.3.1.2). or Chronological Receive)

a. FdxCmdRxPortinit - will perform initialization and reset of the receive port’s

global characteristics. This function always needs to be called first. The user
must assign a portmap ID to each Rx port. This portmap ID is a virtual ID
assigned to the physical port and will be contained in the data read from the
monitor queue (FAxCmdMonQueueRead). The portmap ID allows the user to
identify the physical port on which the data wass received. This is especially
important for applications using multiple AFDX cards or using receive ports in
redundant mode. After a successful call to FAxCmdRxPortInit the state of the
port will be:

4 Global Statistics Available - the global receiver status, output from the
FdxCmdRxGlobalStatistics function call, are available. (See Section
4.3.1.4 for further information)

4 All VL statistics enabled — statistic collections on VLs is enabled (even
if previously disabled thorugh the function FdxCmdRxVLControl).

s Chronological Receive Mode - this is the default mode of operation for a
receive port. By default, it is not necessary to create VLs for data
capturing.

ARINCG664 / AFDX Programmer’s Guide 83

7~y
AM

RIGHT ON TARGET]

No Trigger Control Blocks (TCBs) - no TCBs are enabled. (Trigger
Control Blocks define conditions that will trigger the start of data
capture.)

Note: In Chronological Mode it is not necessary to specify a TCB in
order to capture all incoming frames starting with the first frame
received on the port.

b. FdxCmdRxModeControl - provides configuration for the following modes:

&

Receive mode — Select the mode using to receive data, two modes are
available:

1. VL-Oriented Receive Operation - In this receive mode each port
is characterized by either the address-quintuplet (VL, Src.-IP,
Dst.-IP, Src.-UDP, Dst.-UDP) for AFDX Comm ports, or only the
VL, Dst.-IP, and Dst.-UDP for SAP ports. Each UDP port has its
own message-memory area. Trigger capability is not provided in
this receive mode.

2. Chronological Receive Operation - In this receive mode all
captured frames are stored in a single memory buffer. All VL data
streams will be captured and the user can specify additional VL
filters/checking to be performed if desired. Chronological monitor
mode provides for recording/saving the captured data for replay.

Default Payload mode - the payload mode defines the amount of data
from the AFDX frame that will be stored in the receive buffers when in
Chronological Monitor mode. (The entire AFDX payload data message is
stored when in VL-Oriented Receive mode). Regardless of the payload
mode chosen the frame statistics will always be computed.

Default Chronological mode - the default Chronological mode defines
what data is captured when in Chronological Monitor mode (When in
VL-Oriented Receive Mode only statistics are computed. The user must
specify which VL's are to be captured).

The following code example uses API software library constants and structures to initialize one
port using a portmap equal to 2 and configures the mode to Chronological Monitor mode. The
default setup for payload mode is to capture the full AFDX frame and the default chronological
mode captures and provides statistics for all VLs.

TY FDX PORT INIT IN
TY FDX PORT INIT OUT
TY FDX

x PortInitIn;
x_PortInitOut;

RX_MODE CTRL_IN x_ModeCtrlIn;

TY FDX RX MODE CTRL OUT x ModeCtrlOut;

//--- Initialization
x PortInitIn.ul Port

Map = 2;

ARINCG664 / AFDX Programmer’s Guide 84

7~y
AM

RIGHT ON TARGET]

if (FDX_ERR == FdxCmdRxPortInit(ul Handle, &x_PortInitIn, &x_PortInitOut))
{

printf ("Port Reset failure!!!\n");

}

else

{

printf ("Port Receiver Initialized\n");

}

//--- mode control -> select Chrono Mode

x ModeCtrlIn.ul ReceiveMode = FDX RX CHRONO;

x ModeCtrlIn.ul DefaultPayloadMode = FDX PAYLOAD FULL;

x ModeCtrlIn.ul DefaultCronoMode = FDX RX DEFAULT MON ENA ALL;

x ModeCtrlIn.ul GlbMonBufferSize = 0; // if zero, a default value will be used
if (FDX _OK != (FdxCmdRxModeControl(ul Handle, &x ModeCtrlIn, &x ModeCtrlOut)))

{
printf ("Port 2 Mode Control Failure!!!\n");

}

else
{
printf ("Port Set to Chrono Monitor Receive Mode\n");
printf ("Port Global Mon Buffer Size: %d bytes\n",
x ModeCtrlOut.ul GlbMonBufferSize);

4.3.1.2 Reception Control

After all filters and frame validation methods of the port have been programmed (as defined in
Section 4.3.2 - 4.3.3), the method used to start/stop reception of the data should be defined.
There is one global function providing Rx Control:

a. FdxCmdRxControl - starts/stops reception for a physical port and resets
counters including:

4 Starting/Stopping the receiver - provides for
1. Starting/stopping the receiver on command

4 Global Statistics Reset - defines which global counters to reset
including:

1. Reset nothing
2. Reset all
3. Reset only error related counters.

The following code configures port 2 to receive AFDX frames and resets all receive counters for
this port upon this command.

TY FDX RX CTRL x RxControl;

x RxControl.ul StartMode = FDX START;
x RxControl.ul GlobalStatisticReset = FDX RX GS RES ALL CNT;
if (FDX OK != (FdxCmdRxControl(ul Handle, &x RxControl)))

ARINCG664 / AFDX Programmer’s Guide 85

7~y
AM

RIGHT ON TARGET]

{

printf ("Failure to start Receiver!!!\n");

}

else

{

printf ("Receiver Started\n");

}

4.3.1.3 Trigger Input/Output Usage

As a programming option the trigger input/output signals for the ports can be used in various
ways to control triggers to start data capture and/or to indicate the occurrence of a specific frame
condition or capture status as shown in Table 4-7. This table indicates the functions needed for
the trigger signals and in which receive modes these functions are applicable.

Please refer also to the hardware manual associated with the board type for information on how
to connect external devices to the trigger input/output signals of your AIM ARINC664 device.

Table 4-12

Trigger Input/Output receiver functions

Applicable
mode

go! ©
Function o 2 . robe-In robe-
unctio c 25 API Function Strobe-| Strobe-Out
Type = S = Capability Capability
@) s £
:J o=
> =
©®)
Global Receiver X X | FdxCmdRxTrgLineControl Defines the strobe Input/Output lines to be
used for the receive port
Global Receiver X X | FdxCmdRxVLControlEx Strobe out on frame
reception for a
specific VL*
Global Receiver X X | FdxCmdRxVLControlEx Strobe-out on

erroneous frame
reception for a

specific VL*
Chronological X | FdxCmdMonCaptureControl Strobe-out on
Monitor Capture stop

or

Strobe out on Half

Monitor Buffer Full*
Chronological X | FdxCmdMonCaptureControl Strobe-out on
Monitor Capture start/re-start*
Chronological X | FdxCmdMonTCBSetup Use Strobe-in to enable
Monitor Trigger

* The trigger output strobe is asserted after a trigger condition has been detected by the BIU
processor. Thus, the frame which caused the trigger has to be completely received and
processed by the BIU Processor before the strobe is asserted. Therefore, the strobe will
appear with a delay on the trigger output, relative to the packet on the network. The delay
time is dependent on the current network traffic.

ARINCG664 / AFDX Programmer’s Guide

86

7~y
AM

RIGHT ON TARGET

ARINC664 / AFDX Programmer’s Guide 87

7~y
Al

RIGHT ON TARGET]

4.3.1.4 Global Receiver Status

The Global Receiver function group includes three receiver status function calls,
FdxCmdRxGlobalStatistics

FdxCmdRxVLGetActivity, as shown in Table 4-13. Additional
lower level status can be obtained when in VL-Oriented Receive
mode by using the function FAXCmdRxUDPGetStatus, and,
the Chronological
FdxCmdMonGetStatus as described in Section 4.3.2 and 4.3.3

FdxCmdRxStatus,

when in

respectively.

API Function

Receive mode, by

Table 4-13
Status

and

Retrieve Status
(1) Tx Status
(2) Rx Status

using | (3) Retrieve Captured data

Global Receiver Status

Description

FdxCmdRxStatus

Receiver Status

Port is Stopped/Running/Error

FdxCmdRxGlobalStatistics
(composite status for all

Total Byte Count

Count of total Bytes received since start of
the last counter reset

VLs)

Error Eree frames Count of error free frames since start or the
last counter reset

Erroneous Frames Count of erroneous frames since start or
the last counter reset

Bytes per second Bytes received per second

Frames per second Frames received per second

Physical errors (PHY) Count of frqmes with wrong_physical
Symbol during frame reception
Count of frames with wron

Preamble Errors (PRE) Preamble/Start Frame DeIir?ﬂter received

Unaligned Frame length (TRI) Count of unaligned Frame length received

MAC CRC Errors (CRC) Count of MAC CRC Error

IFG Errors (IFG) Count of short IFG Error (<960ns)

IP Header Errors (IPE) Count of IP static header field errors

MAC Header Errors (MAE) Count of MAC static header field errors

Start Frame Delimiter Errors (SFD) Count of frames_ re_ceived without valid
Start Frame Delimiter

Frame Length Errors (VLS) Count of VL specific Frame size Violation

Sequence Number Errors (SNE) Count of Sequence Number integrity errors

Traffic Shaping Errors (TRS) Count of Traffic Shaping Violation

Frames with size = 1-63 bytes

(SHR)

Frames wi/size = 64-127 bytes

Frames wi/size = 128-255 bytes

Frames wi/size = 256-511 bytes

Frames wi/size = 512-1023 bytes

Frames w/size = 1024-1518 hytes

Frames wi/size = >1518 bytes (LNG)

FdmeginVLGef[Activity Enable Mode Enable mode configured with
(all active or specific VLs) FdxCmdRxVLControl

Payload mode configured with

Payload Mode Fd%(CdexVLCon%rol

ARINC664 / AFDX Programmer’s Guide

88

2

RIGHT ON TARG!

Verification Mode

Verification mode configured with
FdxCmdRxVLControl

List of Error types detected:
PHY, PRE, TRI, CRC, IFG, IPE,

(Errors defined above for
FdxCmdRxGlobalStatistics)

MAE, SFD, LNG, SHR, VLS, SNE

VL valid frame count

VL erroneous frame count

Frames per second Frames received per second

Redundant Frames Count of redundant frames discarded

4.3.2 VL-Oriented Receive Mode

In this Receive Mode the UDP Port

. A Ilcatlons
can receive and store messages for pp)

Application(s)
A |

A A
either "connection" oriented (AFDX
Comm Ports) or "connectionless"
oriented (SAP) ports. The Receive .,
AFDX Comm ports are characterized comm Gu@aiubiundinchy (V) port
by the address-quintuplet, (VL, Src.- UDP Layer

IP, Dst.-IP, Src.-UDP, Dst.-UDP), each with its own message storage area. For an AFDX
Comm port in this mode, the user must specify the exact address quintuplet in order for the VL
frames to be captured. SAP receive ports, however, may receive AFDX messages from
multiple sources. Therefore, the user only specifies the VL and UDP/IP destination adress in
order for the VL frames to be captured. The source of the AFDX frame is only determined after
the message has been received. When operating in VL-Oriented Receive mode the AFDX UDP
ports can perform redundancy management, integrity checking and traffic shaping.

The functions described in this section should be used after the port has been configured for VL-
Oriented Simulation using the function FdxCmdRxModeControl, as described in Section
4.3.1.1. Setting up the port when in VL-Oriented Receive mode consists of the following main
functions:

a. Defining Virtual Link and UDP port to be

monitored/captured VL-Oriented Setup

(1) Define VL characteristics to look

; : : for (VL ID and range) and type of
..and once the Receive port is enabled via etz Tanie

FdxCmdRxControl as defined in Section | (2) setup Rx UDP port (AFDX Comm
port or SAP port...)

b. Reading messages from the UDP Port
C. Individual UDP Port Status

4.3.2.1 Defining the Virtual Link and UDP Port to be Monitored/Captured

The following two functions are associated with definition of the VL and UDP Port streams to
be monitored/captured for a defined port.

ARINCG664 / AFDX Programmer’s Guide 89

FdxCmdRxVLControl -

options:

enables

(or

disables)

an individual

7~y
AM

RIGHT ON TARGET]

VL to be
monitored/captured. Remember, when in VL-Oriented Receive mode, all VL's
are initially disabled (with the FdxCmdRxPortlnit function), therefore, this
function is required if any VL is to be monitored/captured. The VL(s) must be
setup for extended operation and configured for the following receive processing

4 Verification mode - allows the user to define the type of verification to
be performed on the VL as shown in Table 4-14. Each verification mode
requires that parameters be set to establish the range of acceptable receive
frame behavior as shown in Table 4-15 and including:

1. BAG values are in milliseconds and include 1, 2, 4, 8, 16, 32, 64,

128 msecs. Jitter range is 1 to 65535 microseconds.

. BAG _ BAG
;—?Maximum Jitter
« Window
Jitter =0 0 < Jitter < Max Jitter = Max >
2. Max/Min Frame Length includes all fields shown below (except

the Preamble and Start Delimiter):

Preamblg i MAC P uDP AFDX Payload o FCS
belimitenl - Header Header |Heade Yy Seduence
Message
7 AN 22 8 17...1471 1 4)
Frame-Size
3. Max Skew - the maximum time difference between the arrival

time of the redundant frame with the same sequence number.
Values are in microseconds with a range of 0 to 65535usec.

4 Extended Filter - allows the user to specify that the VL frames meet an
additional filter before being captured. This generic filter compares up
to 4 bytes of the AFDX frame with a user specified value. The user
has the option to store the frame if the values match/don't match.

b. FdxCmdRxVLControlEx - (optional) extended VL function to configure output
of a strobe signal or interrupt upon VL frame reception or frame reception error
or interrupt on VL Buffer Full/Half Full/Quarter Full.

ARINCG664 / AFDX Programmer’s Guide

90

7~y
AM

RIGHT ON TARGET]

Table 4-14 Verification Mode Options and Required Parameters (for VL-Oriented Rx Mode)

Verification Mode Description Default Parameters
Setting Required
S| S
g 2|
S =
o =2 < S| &=l 3
S 1o a5
Redundancy Enable Redundancy Management|v’ v v
Management as described in AFDX End System

Detailed Functional Specification.
The discard counter is incremented
if the current received frame is
discarded by the RM facility for
either Port A or Port B.

Traffic shaping Enable Traffic Shaping Verification v VIV IVI|V
Verification like described in AFDX Switch
Detailed Functional Specification. If
during the previous frame check, an
error occurs (except if Sequence
number error or Invalid Packet
Processing is enabled), the frame is
not fed to the TS facility.

VL specific Frame size Maximum frame size for the given]v’ |V v
Check VL is checked.

Sequence Number Sequence numbering of the|v

Integrity check incoming frames are checked

Invalid Packet All Packets, also the erroneous, will

processing be passed through to the buffer

ARINC664 / AFDX Programmer’s Guide 91

7~y
AM

RIGHT ON TARGET]

C. There are two sets of functions associated with creation of the UDP Rx port:

AFDX Comm port functions and SAP functions as described below:

For AFDX Comm Port (Sampling or Queuing Connection-oriented port):

4 FdxCmdRxUDPCreatePort - this function will define the characteristics
associated with a UDP Sampling/Queuing port associated with a VL as
listed in the example below (showing four UDP ports). A UDP Handle
to the UDP Port is returned when this command is issued successfully.
The handle is used for all further communication/control of the UDP Port.
An AFDX Comm port is connection-oriented, therefore, the entire
address quintuplet is specified for the create port function to define the
point-to-point connection.

FdxCmdRxUDPCreatePort
Type

(Sampling Number of

or Source | Destination Maximum buffered

VL ID | Queuing) | Source IP |Destination IP| UDP UDP Message Size | messages
60 Sampling | 10.1.33.1 | 224.224.0.0 1 1 100 bytes 1
60 Sampling | 10.1.33.1 | 224.224.0.0 2 2 90 bytes 1
60 Sampling | 10.1.33.1 [224.224.0.0 3 3 80 bytes 1
60 Queuing | 10.1.33.1 | 224.224.0.0 4 4 max. 8000 bytes 3

Maximum Message Size - the size of the AFDX Payload Message. The
size is fixed for Sampling ports. For queuing ports, it is the
maximum size of the complete message to be reassembled and
received at the queuing port.

Number of Messages - for a Sampling Port this is always 1. For a
Queuing Port, this indicates the number of AFDX complete
(reassembled) messages (with size = to max Message size) to be
buffered when received. The default value is 2.

The following code enables one VL (VL 60) one UDP Sampling port (1) for
monitoring/capturing. Verification Mode is disabled, therefore, there will be no Traffic Shaping
performed on the received data frames for that VL. The whole AFDX frame will be stored in
the VL buffer.

//--- VL control
x VLControl.
x VLControl.
x VLControl.
x VLControl.
x VLControl.

x _VLDesc.ul |
x VLDesc.ul VLBufSize

ul VLId

ul VLRange

ul EnableMode
ul PayloadMode
ul TCBIndex

VerificationMode

(per VL which we want to watch)

DEF VL;

1;

FDX_RX_VL_ENA EXT; //required value for VL-Oriented
FDX_PZ—\YLOZ—\D_FULL ;

0;

FDX_RX VL CHECK DISA;
0x8000;

ARINC664 / AFDX Programmer’s Guide 92

7~y
AM

RIGHT ON TARGET]

if (FDX_OK != (FdxCmdRxVLControl(ul Handle, &x_ VLControl, &x_VLDesc)))
{
printf ("Receive VL Control Failure!!!\n");
}
else
{
printf ("VL:%d Enabled for Capturing on Port\n", DEF VL);
}

//--- create udp-port for read
x UdpDesc.ul PortType

x UdpDesc.x Quint.ul IpDst

x UdpDesc.x Quint.ul IpSrc

x UdpDesc.x Quint.ul UdpDst

x UdpDesc.x Quint.ul UdpSrc

x UdpDesc.x Quint.ul V1Id

x UdpDesc.ul UdpNumBufMessages
x UdpDesc.ul UdpMaxMessageSize

FDX_UDP_SAMPLING;
DEF_DST IP;

DEF SRC IP;

DEF DST UDPI;
DEF_SRC_UDP1;
DEF_VL;

1;
DEF_UDP_MAXMSG;

if (FDX OK != FdxCmdRxUDPCreatePort(ul Handle, &x_ UdpDesc, &g _pUdplPort2Handle))
{

printf ("Receive UDP Port Creation Failure!!!n");

}

else

{
printf ("Rx UDP Port Created on Port -- VL:%d UDP Port:%d\n",DEF VL,DEF DST UDP1);
}

For SAP Port (Connectionless-oriented port):

N FdxCmdRxSAPCreatePort - this function will define the characteristics
associated with the SAP port. A UDP Handle to this UDP SAP Port is
returned when this command is issued successfully. The handle is used
for all further communication/control of the UDP Port. The
characteristics for the SAP Tx port include only those listed below.
Remember, for a SAP port - since the port is "connectionless” it can
receive from multiple E/S's and the source is determined at the time of
reception, therefore, only the Destination IP/UDP addresses are required.

FdxCmdRxSAPCreatePort

Number of
Destination | Maximum Message| buffered
VL ID Destination IP UDP Size messages
60 224.224.0.0 1 max. 8000 bytes 1
60 224.224.0.0 2 max. 8000 bytes 1
60 224.224.0.0 3 max. 8000 bytes 1
60 224.224.0.0 4 max. 8000 bytes 3

ARINCG664 / AFDX Programmer’s Guide 93

7~y
AM

RIGHT ON TARGET]

Maximum Message Size - the size of the AFDX Payload Message. For
SAP ports, it is the maximum size of the complete message to be
reassembled and received at the port.

Number of Buffered Messages - For a SAP Port, this indicates the
number of complete reassembled messages (with size = to max
Message size) that may be buffered. The default value is 2.

ARINCG664 / AFDX Programmer’s Guide 94

7~y
AM

RIGHT ON TARGET]

4.3.2.2 Reading Messages from the Port

Now that the MAC Header, IP Header and UDP Header have been defined for the UDP port as
described above, the Receive port can be started using the Global Receive function call,
FdxCmdRxControl as defined in Section 4.3.1.2. The user may then want to read the AFDX
Payload Message received at the port.

S_tar_t MAC IP UDP AFDX Pa Ioad Sequencq
Preambl{ pelimiter Header Header Headel Messa{;e Number| FCS
bytes 7 1 14 20 8 17...1471 1 4

There are two sets of functions for reading messages received by the port - one for AFDX
Comm ports and one for SAP ports as defined in the following two sections.

4.3.2.3 Reading Messages from the AFDX Comm Port

For AFDX Comm ports, reading AFDX Payload messages received by the port is accomplished
using the FdXCmdRxUDPRead or FdXCmdRxUDPBIlockRead functions. These functions
should be performed after FAXCmdRxCreatePort has been executed and a UDP Port handle
obtained from that function. The size of the data read from the port cannot exceed the
Maximum Message Size defined when creating the UDP port using
FdxCmdRxUDPCreatePort. FdxCmdRxUDPBIlockRead performs in the same manner as
FdxCmdRxUDPRead, however, it allows the user to read to from multiple ports with one
function call.

The format of the Payload message received from the port is shown in Figure Figure 4-5.

ARINCG664 / AFDX Programmer’s Guide 95

7~y
AM

Figure 4-5 AFDX Comm Port Message Buffer Layout
AFDX Comm Port Message Buffer Layout
31 24 | 23 16 | 15 8 | 7 0

Time Tag High

Time Tag Low

Buffer
Header

Message Size

Reserved

AFDX Payload
Message

Received UDP Message

sampling message: up to UDP payload (1 — 1471 bytes)
queuing message: up to 8Kbytes)

One entry will contain, one. complete sampling, or-queuing
message and/a Buffer-Header containing the time. tag, of
the last received message. (For-queuing,ports, where
the messages can be fragmented,; it/is; the time tag, of the
last received fragment:)

Programming considerations are listed below for each type of AFDX Comm UDP port:

a. Sampling Port

&

If the message received at the port is larger than the Maximum Message
Size defined with FdxCmdRxCreatePort, the extra bytes will be
discarded.

FdxCmdRxUDPRead or FdxCmdRxUDPBIlockRead should be
performed at the sampling rate expected at the receive port for that UDP.
The UDP Buffer used to store a received Sampling port's AFDX message
is overwritten when the subsequent AFDX frame is received. (Number
of messages read returned by the function call will be 0 or 1.)

b. Queuing Port

&

&

The reception of the entire message may require the reception of multiple
AFDX frames (reassembly will be by IP layer).

More than one message can be read from the queuing port using the
FdxCmdRxUDPBIlockRead function.

Queuing messages are received asynchronously, therefore, the UDP
Queuing port should be polled at a rate appropriate for expected Queuing
messages. If a message has not been received or is in the process of being
received by the UDP port, FdxCmdRxUDPRead /

ARINC664 / AFDX Programmer’s Guide 96

7~y
AM

RIGHT ON TARGET

FdxCmdRxUDPBIlockRead will return a zero for Number of messages
actually read.

The following code checks the status of a UDP port, and if the number of messages received is

greater than 0, the UDP message is read and printed.
/* Read Udp Port Status */
if (FDX OK != (r RetVal = FdxCmdRxUDPGetStatus (ul HandlePort, aul UDPHandles[k],
&x UdpRxStatus)))
printf ("\r\n\n FdxCmdRxUDPGetStatus () failed.");
else

{

printf ("\r\n\n FdxCmdRxUDPGetStatus () UDP-HandleNo:%d MsgCount:%101d
MsgErrorCount:%101d ", k, x UdpRxStatus.ul MsgCount,
x UdpRxStatus.ul MsgErrorCount);

/* Read Udp Port Data */

if (0 < x UdpRxStatus.ul MsgCount)
{

if (FDX OK != (r RetVal = FdxCmdRxUDPRead (ul HandlePort, aul UDPHandles[k],
3, &ul MsgRead, auc_Data)))

printf ("\r\n FdxCmdRxUDPRead () failed.");

else

{

if (ul MsgRead > 0)

{

TY FDX UDP HEADER *px UDPHeader;
/* Get pointer to first Header (start of Array) */
px_ UDPHeader = (TY FDX UDP HEADER*) auc Data;

for (j=0; j<ul MsgRead; j++)
{
TY FDX IRIG TIME x IrigTime;
/* Get IRIG Time */
FdxFwIrig2StructIrig(&px UDPHeader->x FwlrigTime, &x IrigTime);

/* print size and Time information */

printf ("\r\n FdxCmdRxUDPRead () MsgRead:%101d MsgSize = %081x IRIG Day:%1d
Time:%021d:%$021d:%021d:%031d:%031d",

ul MsgRead, px UDPHeader->ul MsgSize,

x IrigTime.ul Day, x IrigTime.ul Hour, x IrigTime.ul Min,

x IrigTime.ul Second, x IrigTime.ul MilliSec, x IrigTime.ul MicroSec);

/* print Buffer Data */
pData = (AiUInt8 *)px UDPHeader;
for (i=0; i1 < px UDPHeader->ul MsgSize; i++)
{
if (0 == (41%16))

printf ("\r\n Data %041x: %02x", i, pDatal[i+l6]);
else

printf (" %02x", pDhatal i+1l6]);

}

/* Get pointer to next message */

px_ UDPHeader = (TY FDX UDP HEADERY¥) (((AiUInt32) (px UDPHeader)) +
px_ UDPHeader->ul MsgSize + sizeof (TY FDX UDP HEADER));

}

else

ARINC664 / AFDX Programmer’s Guide 97

7~y
AM

RIGHT ON TARGET]

printf ("\r\n FdxCmdRxUDPRead () MsgRead:%101d ", ul MsgRead);
}

4.3.2.4 Reading Messages from the SAP Port

For SAP ports, reading AFDX Payload messages received by the port is accomplished using the
FdxCmdRxSAPRead or FdxCmdRxSAPBlockRead functions. These functions should be
performed after FAXCmdRxSAPCreatePort has been executed and a UDP Port handle
obtained from that function. The size of the data read from the port cannot exceed the
Maximum Message Size defined when creating the UDP port using
FdxCmdRxSAPCreatePort. FdXCmdRxSAPBlockRead performs in the same manner as
FdxCmdRxSAPRead, however, it allows the user to read to from multiple ports with one
function call.

The format of the Payload message received from the port is shown in Figure 4-6. Notice the
difference between the data received at a SAP port and the data received at the AFDX Comm
Port is that the SAP port identifies the source (IP/UDP source) of the AFDX message. This is
performed since the port is "connectionless" i.e. the destination of the message is not determined
until time of transmission, therefore, a destination port could receive messages from multiple

source ports.

Figure 4-6 SAP Port Message Buffer Layout

SAP Port Message Buffer Layout

31 24 | 23 16 | 15 8 | 7 0

Time Tag High

Time Tag Low

Message Size

IP Source Address

UDP Source Port

Buffer Header

Reserved

Received UDP Message

message size: up to 8Kbytes

AFDX Payload
Data

One entry will contain one. complete. re-assembled
message and,a, Buffer-Header containing the source and
the time tag, of the last received/message/fragment:

ARINCG664 / AFDX Programmer’s Guide 98

7~y
AM

RIGHT ON TARGET]

Programming considerations are listed below for the SAP port:

a. The reception of the entire message may require the reception of multiple AFDX
frames (reassembly will be by IP layer).

b. More than one message can be read from the port using the
FdxCmdRxSAPBIlockRead function.

C. Messages are received asynchronously, therefore, the SAP port should be polled
at a rate appropriate for expected messages. If a message has not been received
or is in the process of being received by the UDP port, FAXCmdRxSAPRead /
FdxCmdRxSAPBIlockRead will return a zero for Number of messages actually
read.

4.3.2.5 Individual UDP Port Status
The function FAXCmdRxUDPGetStatus provides the lowest level UDP port status information
available including:

a. Message Count - Count of messages written to this UDP port since the receiver
was started.

b. Error Count - Count of erroneous message written to the UDP port buffer since
the receiver was started.

ARINCG664 / AFDX Programmer’s Guide 99

7~y
AM

RIGHT ON TARGET]

4.3.3 Chronological Monitor Receive Mode

In this Receive Mode all captured frames are stored in a single memory buffer All VL data
streams are captured with the option for the user to filter capture frames by VLs or range of VLs.
In addition, the user can specify additional VL filters/checking to be performed if desired
including redundancy management, integrity checking and traffic shaping. This mode provides
for recording/saving the captured data for replay. Four Capture modes provide different
methods for capturing and storage of frames in the Monitor buffer. In addition, an extensive and
flexible trigger function is provided allowing the user to define specific conditions on which to
trigger/start data capture. Strobe inputs/outputs can also be used with the trigger functions to
signal start/stop of data capture or to enable specific trigger conditions.

The functions described in this section should be used after the port has been configured for
Chronological Monitor Receive Mode using the function FdxCmdRxModeControl, as
described in Section 4.3.1.1. Setting up the port when in Chronological Monitor Receive Mode
consists of the major steps defined below and described in further detail in the following
sections:

a. Defining the Capture mode Chronologic (Monitor) Setup
(1) Define capture mode
b. Allocating the Monitor Queue (2) Create Monitor queue to hold
captured data.

C. Additional VL Filter Capability (optional)
d. Create Trigger conditions (optional)

...and once the Receive port is enable via FAXCmdRxControl as defined in Section
4312...

e. Reading the Captured Data (optional)

f. Retrieving Monitor Status

Note: If you set the Default Chronological mode to FDX_RX_DEFAULT_ENA_CNT (using
the FdxCmdRxModeControl function)where only the VL-Oriented counters are
updated and VLs are disabled for capturing, the functions described in this section do
not apply, with the exception of the VL Filter functions described in Section 4.3.3.3.

ARINCG664 / AFDX Programmer’s Guide 100

7~y
AM

RIGHT ON TARGET]

4.3.3.1 Defining the Capture Mode

The function FdxCmdMonCaptureControl provides configuration of one of four Capture
modes and Strobe output based on Monitor Buffer Capture conditions as described below:

Capture Modes

SingleShot-Standard | SingleShot-Selective Continuous Record

a. Capture Modes

4 [SingleShot-Standard|
In this mode, each port uses a pre-defined buffer for capturing frames.
After this buffer is full, no more frames will be stored. The default size of
this buffer depends on your board type. Trigger Control Blocks (TCBs)
can be used in this mode to define the trigger condition that will start data
capture (default capture start is when a frame is received) and how much
"pre-trigger data" is to be stored in the capture buffer.

Listed below are some application examples:

- Capture messages before an erroneous packet is received (using 10%
of Monitor Buffer) for a particular VL and all messages after the
trigger event until the Monitor buffer is full.

- Capture messages received for a particular VL before an external
strobe input is received (using 25% of Monitor Buffer) and all
messages for the VL after the strobe input until the Monitor Buffer is
full.

¢ [SingleShot-Selective|
This mode is similar to SingleShot-Standard mode, but Trigger-Control-
Blocks are used for filtering, i.e. what data will be captured. Before a
frame is saved in the SingleShot-memory, it will be evaluated using the
active TCB. Only those frames which meet the TCB condition will be
saved.

Listed below are some application examples:

- Capture a message only if the value of a specific parameter is equal to
a specified value.

- Capture only packets with a certain error type.

- Capture packet when an external strobe input occurs.

ARINCG664 / AFDX Programmer’s Guide 101

7~y
AM

RIGHT ON TARGET]

&

In this mode the capture buffer is used as a ring-buffer. User is
responsible for reading frames from the capture buffer at a fast enough
rate to prevent loss of incoming frames. Trigger Control Blocks can be
used in this mode to define the trigger condition that will start data
capture (default capture start is when a frame is received).

Listed below are some application examples:

- Continuously capture all messages received for a particular VL and
display them.

- Start capture when any frame is received for a particular VL, capture
only the frames received for the VL, and setup a TCB to indicate a
trigger condition when packets are received for the VL with an
unaligned frame length error. Display the packets that created the
trigger event.

N Record
In this mode, the Monitor buffer is organized in the same way as in
Continuous mode. However, the frames can be written directly to a
user-specified file for later replay, or fed directly to an output port,
configured for Replay, for immediate loopback.

Trigger-Control Blocks can be used in this mode to define the trigger
condition that will start data capture (default capture start is when a frame
IS received).

Listed below are some application examples:

- Continuously capture all messages received for all/a particular VL/or
range of VLs received and save the data in a file for subsequent

replay.

- Continuously capture all messages received for a particular VL with a
specific MAC/IP/UDP port address that contains a hex value of
'FAF3" in the fifth word of the payload data area for subsequent replay
or analysis.

b. Strobe Output - as described in Section 4.3.1.3 strobe output signals can be used
by the Receiver when in Chronological Receive mode to signal the following
conditions:

4 Capture has stopped due to full Monitor Capture Buffer (SingleShot-
Standard or SingleShot-Selective Capture modes)

ARINCG664 / AFDX Programmer’s Guide 102

7~y
AM

RIGHT ON TARGET]

4 Capture has stopped due to half full Monitor Capture Buffer
(Continuous or Record mode)

4 Capture has started (for all Capture modes)/re-started (for SingleShot
Selective Capture mode)

4.3.3.2 Allocating the Monitor Queue

After the Chronological Monitor mode has been configured (FdxCmdRxModeControl) and the
Capture mode has been defined (FdxCmdMonCaptureControl), a Monitor queue for storing
captured data must be allocated by calling the function FdxCmdMonQueueControl. This
function will return a Queue ID for use with all future Monitor queue functions.

4.3.3.3 Additional VL Filter Capability

When in Chronological Receive mode, the default VVL-capture setting (initiated with function
FdxCmdRxModeControl set to Chronological Receive mode) is for all received VL's to be
captured. If you want to specify the VL or range of VLs to be captured, you need the
command(s) defined below. Otherwise, continue with Section 4.3.3.4, Creating Trigger
Conditions.

Note: This VL filter function is executed prior to Trigger Control Block processing.

a. FdxCmdRxVLControl - enables (or disables) an individual VL or range of
VLs to be monitored/captured.

4 Payload mode - allows the user to override the default payload mode
previously defined with FdxCmdRxModeControl. The payload modes
available are shown in Fehler! Verweisquelle konnte nicht gefunden
werden..

4 TCB Index - allows the user to specify trigger control block processing
for the given VL. See Section 4.3.3.4 for TCB setup details.

ARINCG664 / AFDX Programmer’s Guide 103

7~y
AM

RIGHT ON TARGET]

4 Enable mode - configures the level of monitoring to be performed as
defined below:

8 2 |3

= o °
.. = & e c g S
Monitoring Level s = o o £ 2oy

5 |88 8., §.,|8858%
T o] B Sz gE o 8.5
2> P2 8| 2|8 ET T4
2F A8 8 g 2SS |=0 S K=
Oc| >26| OH&E| O&E > E TH

ENA_STAT X

ENA CNT X X

ENA_MON_GOOD X X X

ENA MON_ALL X X X X

ENA_EXT X X X X X

*Verification mode, Extended Filter and FdxCmdRxVLControlEx (for extended
strobe signal and interrupt output) is defined below

4 Verification mode - allows the user to define the type of verification to
be performed on the VL or range of VLs. (Only valid for Enable Mode
set to ENA_EXT.) Each verification mode requires that parameters be set
to establish the range of acceptable receive frame behavior as shown in
Table 4-14 including:

1. BAG values are in milliseconds and include 1, 2, 4, 8, 16, 32, 64,
128 msecs. Jitter range is 1 to 65535 psecs

. BAG ___BAG
;—?Maximum Jitter
|« Window
Jitter =0 0 < Jitter < Max Jitter = Max
2. Max/Min Frame Length includes all fields shown below (except
the Preamble and Start Delimiter):
Start MAC IP UDP AFDX
Preamblg pelimiter Header Header Heade AFDX Payload SNeE;ebnecre FCS

Message

7 1 klZ 22 8 17...1471 1 y
Y

Frame-Size

ARINCG664 / AFDX Programmer’s Guide 104

7~y
AM

RIGHT ON TARGET]

3. Max Skew - the maximum time difference between the arrival
time of the redundant frame with the same sequence number.
Values are in microseconds with a range of 0 to 65535 psecs.

4 Extended Filter - allows the user to specify that the VL frames meet an
additional filter before being captured. (Only valid for Enable Mode set
to ENA_EXT.) This generic filter compares up to 4 bytes of the AFDX
frame with a user specified value. The user has the option to store the
frame if the values match/don't match.

b. FdxCmdRxVLControlEx - (optional) extended VL function to configure output
of a strobe signal or interrupt upon VL frame reception or frame reception error
or interrupt on VL Buffer Full/Half Full/Quarter Full. (Only valid for Enable
Mode set to ENA_EXT.)

Table 4-15 Verification Mode Options and Required Parameters (for Chronological Monitor
Receive Mode)
Verification Mode Description Default Parameters
Setting Required
e IS
3 2| 2
S8 2
5 |3 |o % ”;é %
215 |&[S15)5] 5
Redundancy Enable Redundancy Management] v’ v v
Management as described in AFDX End System
Detailed Functional Specification.
The discard counter is incremented
if the current received frame is
discarded by the RM facility for
either Port A or Port B.
Traffic shaping Enable Traffic Shaping Verification A AR AR AR

Verification like described in AFDX Switch
Detailed Functional Specification. If
during the previous frame check, an
error occurs (except if Sequence
number error or Invalid Packet
Processing is enabled), the frame is
not fed to the TS facility

VL specific Frame size Maximum frame size for the given|v v v
Check VL is checked.

Sequence Number Sequence numbering of the]v’

Integrity check incoming frames are checked

Invalid Packet All Packets, also the erroneous, will

processing be passed through to the buffer

ARINC664 / AFDX Programmer’s Guide 105

7~y
AM

RIGHT ON TARGET]

The following example sets up a VL Filter to capture only frames with VL ID of 1-10 when in
Single-Shot Standard Capture mode. Extended Verification is enabled for these VLs such that
Traffic Shaping can be performed. The parameters required to be set for Traffic shaping are
shown above and set as indicated below. Any errors associated with the Traffic shaping
parameters will be indicated in the Monitor Buffer entry for the associated frame. Counters for
errors associated with the Traffic Shaping can be obtained globally for all VLs using the
function FdxCmdRxGlobalStatistics or for individual VLs by using function
FdxCmdRxVLGetActivity as indicated in Table 4.3.1.3-1.

/* This example sets up a VL Filter to capture only frames with VL ID of 1-10. */
/* Extended Verification is enabled such that Traffic Shaping can be performed. */

TY FDX MON CAP MODE x CapMode;
TY_FDX_RX_VL_CTRL X_VLControl;
TY FDX RX VL DESCRIPTION x VLDescription;

x_CapMode.ul CaptureMode = FDX MON SINGLE; /* Single-Shot Standard capture mode */
x CapMode.ul TriggerPosition = 50; /*Set Trigger postion to middle of Monitor memory*/
x_CapMode.ul Strobe = FDX MON STROBE DIS;/* No strobe on Capture start/stop */

X_VLControl.ul_VLId = 1;

x VLControl.ul VLRange 10;
X_VLControl.ul_EnableMode FDX RX VL ENA EXT;
x VLControl.ul PayloadMode FDX PAYLOAD FULL;

x_VLControl.ul_TCBIndex = OxFF;

x VLDescription.ul Bag = 16; /* 16 milliseconds */
x_VLDescription.ul Jitter = 40; /* 40 milliseconds */

x VLDescription.ul MaxFrameLength = 1400; /* 1400 bytes */
x_VLDescription.ul MaxSkew = 0; /* N/A for non-redundant mode */
x VLDescription.ul VerificationMode = FDX RX VL CHECK TRAFIC;

x VLDescription.ul VLBufSize = 0;

x VLDescription.x VLExtendedFilter.ul FilterMode = FDX DIS;

x VLDescription.x VLExtendedFilter.ul FilterMask = 0;

x VLDescription.x VLExtendedFilter.ul FilterPosition = 0;

if (FDX OK != (FdxCmdRxVLControl (ul Handle, &x VLControl, &x VLDescription)))

printf ("\r\nFdxCmdRxVLControl () failed.");

ARINCG664 / AFDX Programmer’s Guide 106

7~y
AM

RIGHT ON TARGET]

4.3.3.4 Creating Trigger Conditions

Chronological Monitor mode has a default trigger defined to start capture once any frame
has been received for all VL's. If you need more specific triggers to define when to start data
capture or to define what is to be captured then this section will guide you in understanding TCB
setup.

Note: At packet reception, the Monitor TCB processing will be executed after the Error
Verification facility, the Redundancy Management (if enabled) and the VL- Filter
processing (Section 4.3.3.3). Therefore, if one of the previous facilities discards the
received packet, then the monitor TCB processing will not be executed.

The API functions described in this section will provide flexible and comprehensive trigger
conditions and trigger sequencing for monitor start, enabling detailed analysis of VL packet
based traffic. Triggers can be defined for error conditions, external strobe input, data patterns
received within the frame, or to make it easy, the reception of any frame received.

The Trigger Control Blocks (TCBs) define an event/condition within a received data packet that
trigger data capturing or assert an external strobe. TCB(s) can be linked/assembled to create a
sequence of trigger events, which will start the data capturing or assert an external strobe as

shown in Table 4-16.
Table 4-16 TCB Content

TCB Parameter Description
TCB Index 1-253
Trigger Type Trigger on:

1. Error (Error Trigger)

2. External Strobe*

3. Generic Data Pattern (Generic Trigger)
4. Reception of any frame

for Generic Trigger The position relative to start of frame, the mask and the
compare value for the Generic Data Pattern Trigger Type

for Error Trigger The Error Trigger Condition for the Error Trigger Type (See
Table 4-17)

Next True Index The index of the next TCB to evaluate after the condition for
this TCB is True

Next False Index The index of the next TCB to evaluate after the condition for
this TCB is False

Trigger Bits Trigger Bits in the Monitor Status Trigger Pattern to set/clear

if the TCB evaluation is True (for start of capture condition)

TCB Extended Parameters | Assert strobe if TCB evaluation is True

Assert interrupt if TCB evaluation is True

*Note: If the "Trigger on External Strobe Event' is used in redundant operation mode, the TCB
process shall allocate the same trigger input line for Port A and Port B.

ARINCG664 / AFDX Programmer’s Guide 107

7~y
AM

RIGHT ON TARGET]

Table 4-17 Error Conditions Available for Triggers

Error Definition Symbol

Wrong physical Symbol during frame reception. PHY
Wrong Preamble/Start Frame Delimiter received. PRE
Unaligned Frame length received TRI

MAC CRC Error. CRC
Short Interframe Gap Error (<960ns) IFG

Frame without valid Start Frame Delimiter received SFD
AFDX IP Framing Error (AFDX-IP frame specific settings violated). IPE

AFDX MAC Framing Error (AFDX-MAC frame specific settings violated). | MAE
Long Frame Received (> 1518 Bytes up to 2000 bytes) LNG
Short Frame Received (40 to < 64 Bytes) SHR
VL specific Frame size Violation VLS
Sequence No. Mismatch SNE
Traffic Shaping Violation TRS

Once you have setup your trigger conditions using the TCB(s), you will then tell the trigger
process which TCB to evaluate. This is done by setting up the global Monitor Trigger Index
Word using FAxCmdMonTrglindexWordIni.

You also need to tell the trigger process what the final value of the Monitor Status Trigger
Word will be when the TCB or sequence of TCB conditions is true. This is done by setting up
the Start Trigger Compare and Mask value using function FdxCmdMonTrgWordIni.

As shown in Figure 4-7, each TCB defines the modification of the Monitor Status Trigger
Word each time a TCB evaluation is True. If the Monitor Status Word, when masked with
the user-defined Start Trigger Mask is equal to the Start Trigger Compare, then the start
trigger condition will become true and data capture will be started.

If you need to enable the trigger process to evaluate only a specific VL, you need to use
FdxCmdMonTrglndexWordIniVL which will enable the TCB process to evaluate the TCB
Index specified with FdxCmdMonTrglndexWordIniVL when that VL is being
received/evaluated.

ARINCG664 / AFDX Programmer’s Guide 108

7~y
AM

RIGHT ON TARGET

Figure 4-7 TCB Evaluation Process

o mmmommmm R
oue" controls TCB evaluation
N

-
e.g initialize with #0 ’,"') . ~
i Global Monitor Trigger Index Word Initialized via: FdmedMonTrgInd‘t;xWordIni(...)
//\‘\.J reserved [TCBI | /:"
- . . .
ol --=""" modified on reception of a frame on a specific VL
P TCB#07] [(defined via FdAxCmdMonTrgIndexWordIniVL(...))
"next’ = 1
| TCB#1 =
"next"=n
N
’ “\\
/' Global Monitor Trigger Word Initialized via: FdmedMonTrngndJni(...)
. /| reserved Start Trigger Mask [Start Trigger Comp | N\
next’ = 0 ¥4 \
—»| TCB#n 7 \
I —— i 1
1 1
i . : »> ;
TCB Sequence defined via: \ Global Monitor Status Word (internal) _ £ Start Trigger
FdxCmdMonTCBSetup(...) N N //
For Trigger Sequences, all types \ \ & /
of TCBs can be used N e
"TriggerBits clearsef! L
e, ‘4'

~ -
~ -
-

Typical Trigger Setup Command Sequence
1 Define TCB(s) and implicitly a Trigger Sequence if neccessary FdAxCmdMonTCBSetup(...)

2 Initialize Monitor Trigger Word FdxCmdMonTrgWordIni(...)
3 Initialize Monitor Trigger Index Word with the TCB Start Index FdxCmdMonTrgIindexWordIni(...)
4 Initialize VL related Trigger Index with a TCB Index if neccessary FdxCmdMonTrgIindexIniVL(...)

ARINCG664 / AFDX Programmer’s Guide 109

7~y
AM

RIGHT ON TARGET]

To review, the following functions are used to setup the trigger functionality when in
Chronological Receive mode.:

a.

FdxCmdMonTCBSetup - configures one TCB as shown in Table 4-16.
Multiple FdxCmdMonTCBSetup commands may be required when TCBs are
to be linked together.

FdxCmdMonTrgWordIni - defines the final Start Trigger Compare value that
the Monitor Status Trigger Word must equal when masked with the Start Trigger
Mask. Once these values are equal, the trigger will be initiated and capture will
be started. (Strobe output can be performed on capture start/restart based on how
the user defined the parameters in FdxCmdMonCaptureControl.)

FdxCmdMonTrglndexWordlIni - defines the TCB to be used for evaluation by
the TCB process.

FdxCmdMonTrglndexIniVL - (optional) defines the TCB to be used for a
specific VL. This TCB will temporarily override the global Monitor Trigger
Index Word while packets from this VL are being received and evaluated. (As
described in Section 4.3.3.3, FdxCmdRxVLControl defines an initial value for a
trigger condition to be evaluated for a particular VL or range of VLs.
FdxCmdMonTrglndexIniVL can be used to modify the trigger condition to be
evaluated for a specific VL "on-the-fly", thus overriding the TCB Index specified
with the function FAxCmdRxVLControl.)

/*
* This example shows how to set up a sequence of 2 Trigger Control Blocks when in
* Selective Capture mode. The Capture mode and TCBs are setup to capture only the
* frames received for VL100 with either a short or long frame error. If an error
* occurs, a strobe output will be generated.
*/

TY FDX MON CAP MODE %x_CapMode;

TY FDX MON TCB SET x_MonTCBSet;

TY FDX MON TRG_WORD INI x MonTrgWordIni;

x_CapMode.ul CaptureMode = FDX MON SELECTIVE; /* switch to selective capture mode */
x_CapMode.ul TriggerPosition = 0; /*Trigger postion N/A in Selective mode*/
x CapMode.ul Strobe = FDX MON_ STROBE DIS;/* No strobe on Capture start/stop */

printf ("\r\n Setup Capture Mode ");
if (FDX OK != (FdxCmdMonCaptureControl (ul Handle, &x_ CapMode)))
printf ("\r\nFdxCmdMonCaptureControl () failed.");

/* Setup TCB No 1 to trigger on generic event (VL=100)*/

x_ MonTCBSet

x_ MonTCBSet
x MonTCBSet
x_ MonTCBSet

x_ MonTCBSet
x MonTCBSet

.ul TrgType
x MonTCBSet.
.ul NextFalseIndex
.ul TriggerBits
.ul TCBEx

FDX TRG GENERIC;

2;

1;

0x010F; /* Set Bits 0x01; Reset Bits 0x0F */
0;

ul NextTrueIndex

x_GenTrg.ul GenBytePos
x GenTrg.ul GenTrgType

4;
FDX TRG TCB GEN STD;

ARINCG664 / AFDX Programmer’s Guide 110

7~y
AM

RIGHT ON TARGET

X MonTCBSet.x GenTrg.ul GenTrigComp =0x00640000; /* Compare MAC address of VL 100 */
x MonTCBSet.x GenTrg.ul GenTrigMask = OxFFFF0000;

if (FDX OK != FdxCmdMonTCBSetup (ul Handle, 1, &x MonTCBSet))
printf ("\r\nFdxCmdMonTCBSetup () failed.");

/* Setup TCB No 2 to trigger on long frame or short frame error */

x_MonTCBSet.ul TrgType = FDX_TRG_ERROR;

x MonTCBSet.ul NextTruelIndex 3;

x MonTCBSet.ul NextFalseIndex = 1;

x MonTCBSet.ul TriggerBits = 0x020F; /* Set Bits 0x02; Reset Bits Ox0F */

X _MonTCBSet.ul TCBEx =1; /* Assert strobe output if TCB eval is true */

X MonTCBSet.x ErrTrg.ul ErrType = FDX LONG FRAME ERROR|FDX SHORT FRAME ERROR;

if (FDX OK != FdxCmdMonTCBSetup (ul Handle, 2, &x MonTCBSet))
printf ("\r\nFdxCmdMonTCBSetup () failed.");

/* Setup Function Trigger Word */
x MonTrgWordIni.ul StartTriggerComp = 0x03; /* Trigger compare is set to combination
of TCB's set bit. */
x MonTrgWordIni.ul StartTriggerMask = O0xO0F;
if (FDX OK != FdxCmdMonTrgWordIni (ul Handle, &x MonTrgWordIni))
printf ("\r\nFdxCmdMonTrgWordIni () failed.");

/* Setup Function Trigger Index Word to start evaluating TCB1*/
if (FDX OK != FdxCmdMonTrgIndexWordIni (ul Handle, 1))
printf ("\r\nFdxCmdMonTrgIndexWordIni () failed.");

ARINC664 / AFDX Programmer’s Guide 111

A
AM

4.3.3.5 Reading the Captured Data

After you have configured the receiver for the appropriate capture mode, VL-Filter and/or
trigger setup, the receiver can be started using FdAxCmdRxControl as defined in section 4.3.1.2.
Captured data can then be retrieved from the monitor queue.

The default size of the monitor queue is board dependant. The size of the monitor queue can be
specified with the FdAxCmdRxModeControl function.

When designing your application for chronological monitoring there are several design
considerations to remember including:

a. The size of the monitor queue and the expected rate of capture - determines how
often you need to read captured frames from the monitor queue

b. The capture mode selected

s Continuous and Record Capture modes - continuously writes incoming
frames to the monitor queue. Therefore, to display/record all data
captured you need to read entries from the monitor queue
(FdxCmdMonQueueRead) periodically at a rate that will insure no
entries are lost. FdAxCmdMonQueueRead initially reads the number of
frames requested beginning at the first frame in the queue. The next time
you call the FdxCmdMonQueueRead, the pointer is automatically
updated to read the next frame in the queue.

When in Record mode, captured data read from the monitor queue can
either be used directly for Replay via the FdxCmdTxQueueWrite
function (if configured for Replay) or saved to a record file to be used for
later replay.

4 SingleShot-Standard or SingleShot-Selective - both modes will only fill
the monitor queue once. You may want to wait until the monitor queue is
full before reading by checking ~monitor queue status
(FdxCmdMonQueueStatus) for Full condition. For SingleShot-
Selective, since only frames that meet the trigger condition are captured,
the monitor buffer may take longer to be filled (depending on your trigger
setup), therefore, you may want to periodically read the monitor queue
(FdxCmdMonQueueRead) to determine if any new entries have been
captured.

If required, you may need to use the seek function, FdAxCmdMonQueueSeek o override the
read pointer in the monitor queue used when FdxCmdMonQueueRead is called.
FdxCmdMonQueueSeek can be used, for example, to read the 3rd captured frame on the first
call to the Read command. It can also be used to set the internal read pointer to the second
monitor queue entry from the start trigger position.

ARINCG664 / AFDX Programmer’s Guide 112

A
AM

The Tell function FdxCmdMonQueueTell just returns the current
location of the read pointer within the queue. This can be used to help the
user keep track of the internal monitor queue pointer if needed.

C. A strobe output signal can be asserted on capture stop, on half monitor buffer full
or capture start/re-start using FdAxCmdMonCaptureControl as discussed in

Section 4.3.1.3.

ARINCG664 / AFDX Programmer’s Guide 113

A
AM

RIGHT ON TARGET

The following monitor queue functions are available to enable you to retrieve captured frames
and examine the status of each individual frame received. As stated above, there is no pre-
determined order or method to use these functions as each user's requirements are different.

a. FdxCmdMonGetStatus - indicates the state of the monitor as shown in Figure
4-8 and the number of frames captured since trigger start (Continuous or Record
mode only). This information can be used to determine whether you want to Read
the monitor queue or wait. Below are the possible monitor states and examples of
actions to be taken based on the state.

1.

2.

Monitor is off

Monitor is waiting for Trigger

Monitor start trigger has occurred. Data is being captured.

When in Continuous or Record capture mode, you may want
to use the number of frames captured parameter returned to
determine the number of entries to read when using
FdxCmdMonQueueRead. Save the frames captured counter
and use again after you request status again to determine how
many new entries to read in the monitor queue.

Capturing has stopped - For SingleShot-Selective mode

If in SingleShot-Selective mode and a transition from triggered
to stopped has occurred, then at least one frame that meets
your trigger conditions defined in the TCB(s) has been
captured. You may then want to perform a monitor queue read
using FdxCmdMonQueueRead.

Monitor buffer is full and no more data will be captured. This
status is only applicable to SingleShot-Standard and SingleShot-
Selective capture modes.

If in SingleShot-Standard mode you may only want to read the
monitor queue after it is full. At that time, you can dump the
entire monitor queue to required memory for display purposes.

ARINCG664 / AFDX Programmer’s Guide 114

A
AM

RIGHT ON TARGET

Figure 4-8 Capture States

Trigger condition Trigger condition
went TRUE. went FALSE.
Capturing data. stop capturing data.

waiting
for start
trigger

triggered

stopped

Trigger condition
went TRUE again.
Capturing data

Got start condition.
capturing data for
pre trigger

Monitor buffer is full.
no more data capturing
posible.

Switch of monitor
for restart.

ARINCG664 / AFDX Programmer’s Guide 115

7~y
AM

RIGHT ON TARGET

The following code creates a Monitor Queue, Performs a read of the Monitor Queue, and if the
number of entries read is not zero, the frame information is copied to a record file, and
information from the frame is printed. The Queue is then deleted - which is required prior to
termination of the program.
/*
* This example reads one entry from the Monitor Queue
*
/
AiUInt32 aul Data[0x10000];
AiUInt32 ul Queueld;
TY FDX MON QUEUE CTRL IN x QueueCtrllIn;
TY FDX MON QUEUE CTRL OUT x QueueCtrlOut;
TY FDX MON QUEUE READ IN x QueueReadlIn;
TY FDX MON QUEUE READ OUT x QueueReadOut;
TY FDX FRAME BUFFER HEADER* px FrameBufferHeader;

#define REC_SIZE 0x10000
AiUInt8 ac RecData[REC SIZE];
AiUInt32 ul RecBytes;

/* Create a Queue */
X QueueCtrlIn.ul QueueControl = FDX MON QUEUE CREATE;
if (FDX OK == (FdxCmdMonQueueControl (ul Handle, &x QueueCtrlIn, &x QueueCtrlOut)))
{
ul QueuelId = x QueueCtrlOut.ul Queueld;
}

else {
printf ("\r\nFdxCmdMonQueueControl () failed.");
exit (1); //exit this process - can't do anything without a queue id

}

/* Read a Queue */

X QueueReadIn.ul EntryCount = 1; /* Read one entry */

X QueueReadIn.ul MaxReadBytes sizeof(aul_Data);

X QueueReadIn.ul ReadQualifier = FDX MON READ FULL; // Read fixed header + AFDX Frame
X QueueReadOut.pv ReadBuffer = aul Data;

if (FDX OK != (FdxCmdMonQueueRead(ul Handle, ul Queueld, &xX QueueReadln,
&x_QueueReadOut)))

printf ("\r\nFdxCmdMonQueueRead () failed.");

if (x QueueReadOut.ul EntryRead > 0)
ul RecBytes = x QueueReadOut.ul BytesRead;
printf("\n %1d Bytes recorded / Frames read:%1d", ul RecBytes,
X QueueReadOut.ul EntryRead);
/* copy all the bytes read for the entry to a record array */
memcpy (ac_RecData, x QueueReadOut.pv ReadBuffer,x QueueReadOut.ul BytesRead);
px_FrameBufferHeader = (TY FDX FRAME BUFFER HEADER*) x QueueReadOut.pv_ReadBuffer;
/* print the sequence number and time tag from the Fixed entry header*/
printf("\n SN = %$08x TtHigh = %081X TtLo = %081X ",
px_ FrameBufferHeader->x FrameHeaderInfo.uc SequenceNlNr,
px FrameBufferHeader->x FwIrigTime.ul TtHigh,

px_FrameBufferHeader->x FwIrigTime.ul TtLow);

/* Print the network (A or B) the data was received on which is found in the */

/* Frame Header Word 1 of the Fixed Entry Header **/
if ((px _FrameBufferHeader->x FrameHeaderInfo.ul FrameHeaderWord 1 & 0x20000000)
== 0x20000000)

ARINCG664 / AFDX Programmer’s Guide 116

7~y
AM

RIGHT ON TARGET

printf ("\n Received on Net A");

else if ((px FrameBufferHeader->x FrameHeaderInfo.ul FrameHeaderWord 1 &
0x40000000) == 0x40000000)
printf ("\n Received on Net B");
else

printf ("\n Network ID wrong");

/* Print the first 128 bytes of the AFDX data frame */

printf ("\n Data: 0000: %$081lx %08lx %08lx %081lx ", aul Data[0], aul Datal 1],
aul Data[2], aul Datal[3]);

printf ("\n Data: 0010: %081x %08lx %08lx %081x ", aul Data[4], aul Datal 5],
aul Data[6], aul Datal 7]);

printf ("\n Data: 0020: %081x %08lx %081lx %081x ", aul Data[8], aul Datal 9],
aul Data(10], aul Data[ll]);

printf ("\n Data: 0030: %081lx %081lx %08lx %$081lx ", aul Data[l2], aul Data[l3],
aul Data[l4], aul Data[l5]);

printf ("\n Data: 0030: %081x %081lx %081x %081lx ", aul Data[l6], aul Data[l7],
aul Data(18], aul Data[l19]);

printf ("\n Data: 0030: %081x %081lx %081x %081x ", aul Data[20], aul Data[Z21],
aul Data(22], aul Data[23]);

printf ("\n Data: 0030: %081x %081lx %081x %081lx ", aul Data[24], aul Data[25],
aul Data[26], aul Data[27]);

printf ("\n Data: 0030: %081lx %081lx %081lx %08lx \n\n", aul Data[28], aul Data[29],
aul Data[30], aul Data[31]);

}

else
{
printf ("\n No entries available.");
}
printf ("\n.Queue Delete....\n");

/* Delete a Queue */
X QueueCtrlIn.ul QueueControl = FDX MON QUEUE DELETE;
X QueueCtrlIn.ul QueuelId = ul Queueld;
if (FDX OK != (FdxCmdMonQueueControl (ul Handle, &x QueueCtrlIn, &x QueueCtrlOut)))
{
printf ("\r\nFdxCmdMonQueueControl () failed.");
}

ARINCG664 / AFDX Programmer’s Guide 117

7~y
AM

RIGHT ON TARGET

THIS PAGE INTENTIONALLY LEFT BLANK

ARINCG664 / AFDX Programmer’s Guide 118

7~y
AM

RIGHT ON TARGET]

5 PROGRAM SAMPLES

Within this section, the program samples will be described. There is sample code available with
the PCI-FDX BSP. The samples consists of several modules. Each of these modules can be used
by program developers as example for learning and developing their code. This section will

discuss the following:

a. Overview of Sample Programs

b. Sample Modules:

Module

Description

afdx MainSample.cpp

Sample User Interface, Initialisation

afdx SystemFunc.cpp

Board level functions, Board Configuration, IRIG

afdx_SampleUtils.cpp

Additional functions (not AFDX specific)

afdx_LogInOut.cpp

Library Administration functions

afdx_GenericRX.cpp

Generic receiver functions.

afdx GenericTX.cpp

Generic transmitter functions.

afdx_GenRX_CCSE.cpp

Generic receiver functions using continuous capture
second edition.

afdx_GenTX_Ext.cpp

Generic transmitter functions using extended generic
transmit modes (buffer queues and transmit sub queues).

afdx_InterruptFunc.cpp

Interrupt functions.

afdx_ReplayFunc.cpp

Setup FDX replay mode

afdx_SimulationRX.cpp

Individual receiver functions (UDP and SAP port related)

afdx_SimulationTX.cpp

Individual tranmitter functions (UDP and SAP port related)

afdx_UdpRx.cpp

Setup UDP receiver by using VL and UDP port
configuration files (*.csv)

afdx_UdpTx.cpp

Setup UDP tansmitter by using VL and UDP port
configuration files (*.csv)

C. Matrix of all API S/W Library Calls vs. Sample Programs

The sample program files contained in the BSP is located in the sample program (spg) file:

x:\Program Files\AIM GmbH\PCI-FDX-Windows-BSP-Vxxxx\spg

In order to run a sample project, please refer to the PCI FDX and S e Tindewam AP
fdXTap™ Getting Started Manual. The Reference Manual AFDX/ Wi
ARINC-664 will provide further detail on library calls and parameter +;£u”nff:,’;-5w
naming conventions used within these sample programs. i 5 S

i Sl

ARINC664 / AFDX Programmer’s Guide 119

7~y
AM

RIGHT ON TARGET]

5.1 Program Samples Overview

Table 5-1-1 provides a list and functional description of the sample programs. You may choose
to use one or more sample programs as a starter program to be modified.

Table 5-1 Program Samples Overview

afdx_udp_sampleOl.cpp (Section 5.2.1) - This sample demonstrates how to:
1. Query available resources and login to a local board and two ports.
2. Reset the board and synchronize board-IR1G-time with PC-time.

3. Setup Port 1 for UDP Port-Oriented transmit mode, i.e., VL & UDP Ports are
defined. VL traffic shaping is supported in this mode.

4. Setup Port 2 to capture using the VL-Oriented Receive mode i.e. individual
buffers for each received VL are provided.

5. Portl sends data to Port2. (an ethernet connection between Port 1 and Port 2 is
required.)

afdx_generic_sample0l.cpp (Section 5.2.2) - This sample demonstrates how to:
1. Query available resources and login to a local board and two ports.
2. Reset the board and synchronize board-IR1G-time with PC-time.

3. Setup Port 1 for Generic transmit mode i.e., a list of AFDX frames with
additional header information can be sent from a specified queue cyclically or a
specific number of times

4. Setup Port 2 to capture using the Chronological Monitor Receive mode i.e.,
Data of all enabled links are stored in one large chronological monitor buffer.

5. Portl sends data to Port2. (an ethernet connection between Port 1 and Port 2 is
required.)

afdx_sample.exe (included in the BSP)- This sample program demonstrates APl function calls
through a user interface as shown in Figure 5-1. (source code included)

ARINCG664 / AFDX Programmer’s Guide 120

Figure 5-1 afdx_Sample.exe User Interface

Testprog‘ramm for nFDx Softwal\e==
AIM. 66.07.2007
Date and Time of creation of sample:Apr 9 2010 14:35:52

FdxInit (>

FdxInit O.K.
Help *?’,. Abort with ’'x’

Select one of the following Tests:

:——Board related Tests / Tools——

L’ Login to BOARD Resource
*E’ Logout from BOARD Resource
*B’ Display BSP Uersions from BOARD Resource

(BOARD Resource
(BOARD Resource

s’ Test Board Control
Test Irig Time Setting

required)
required)

*z <Addr>’ Read from BIU memory (Module &>
‘m <Addr>’ Read from Shared memory (Module 8>
’I <Addr>’ Read from I0 memory (Module &>
*J <Addr>’ Read from Local memory <(Module 8>
’t? Irig Tools <(Add/Sub>

(BOARD and PORT
(BOARD and PORT

Resource required?
Resource required)

*»’ Replay Test
3’ Automatic Rx Test

‘W BITE Transfer Test (loop connector required?
———Port related Tests—-—
pise by Login to PORT Resource
‘e’ Logout from PORT Resource
‘a’ Test Rx Port Control (PORT Resource required)
*h’ Test Rx Mode Control (PORT Resource required)
‘e’ Test Rx Ul Control (PORT Resource required)
. & Test Trigger Setup (PORT Resource required)
*h’ Test Get Status Rx and Mon (PORT Resource required)
ri’ Test Capture Control Single <(PORT Resource required>
*G? Test Capture Control CCSE (PORT Resource required)
‘g’ Test Globhal Statistic (PORT Resource required)
‘y? Test Ul Activity (PORT Resource required)
‘g’ Test Rx Queue (PORT Resource required)
‘n’ Set Tx Static Registers (PORT Resource required>
’p’ <Cycles> B=Cyclic Setup Tx Queue.

Start Tx and get Status (PORT Resource required)
i Test Interrupts (PORT Resource required)
‘u’ UDP related Tests (PORT Resource required>
*?? Print this menue
*x’ Exit Test program

FdxQueryServerConfig 0.K. Server:local
———ID-Type—-Info—————— (List of available resources)——————————

1 8@ BoardName :AMC-FDX-2 BoardSerialNo:368
2 1 PortName:Portl PortNo:1 PortMode:0
3 1 PortName:Port2 PortNo:2 PortMode:0
4 8 BoardName:API-FDX-2 U2 BoardSerialNo:563
5 1 PortName:Portl PortNo:1 PortMode:0
6 1 PortName:Port2 PortNo:2 PortMode:0

—C(End of resource list)

>

NOTE: Login to required resources hefore using functions?t?t?

ARINC664 / AFDX Programmer’s Guide

121

7~y

AM

RIGHT ON TARGET]

5.2 Program Sample Code

5.2.1 UDP-Port Oriented Transmission/VL-Oriented Monitor Storage

This sample demonstrates how to:

1. Query available resources and login to a local board and two ports.

2. Reset the board and synchronize board-IR1G-time with PC-time.

3. Setup Port 1 for UDP Port-Oriented transmit mode, i.e., VL & UDP Ports are
defined. VL traffic shaping is supported in this mode.

4. Setup Port 2 to capture using the VL-Oriented Receive mode i.e. individual
buffers for each received VL are provided.

5. Portl sends data to Port2. (an ethernet connection between Port 1 and Port 2 is

required.)

// afdx udp sampleOl.cpp

//

#include "stdafx.h"
#include <time.h>

#include "aifdx def.h"

// communication parameters

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

DEF_VL
DEF_SUB_VLCNT

DEF SUB VLID1
DEF_SUB_VLID2
DEF_SRC_MAC_LSLW
DEF_SRC_MAC MSLW

DEF SRC_IP

DEF_DST IP
DEF_SRC_UDP1

DEF DST UDP1
DEF_SRC_UDP2

DEF_DST UDP2

DEF_BAG

DEF_FRAME MAXLENGTH
DEF UDP MAXMSG

DEF UDP SAMPLING RATE

/ aifdx_def.h header file is the only header file
required for inclusion to support the AIM API. It

contains the constant, structure and function
definitions used in the API.

(60)
(2)
(1)
(2)
(0x00012120)
(0x00000200)
(0x0a012101)
0xe0e0003c)
24)
23)
3)
4)
0)
1518)
500)
100)

(
(
(
(3
(3
(5
(
(
(

ARINCG664 / AFDX Programmer’s Guide

122

MyFdxInit () ;
MyFdxFreeResources () ;
MyFdxResetBoard() ;
MyFdxResetPort () ;
MyFdxSetupTxPort () ;
MyFdxSetupRxPort () ;
MyFdxStartTx () ;
MyFdxStartRx () ;
MyFdxStopTx () ;
MyFdxStopRx () ;
MyFdxGetStatus () ;
MyFdxGetVLActivity () ;

Function defintions used for
functions defined within this
program.

AiUINnt32
AiUInt32
AiUInt32
AiUINnt32
AiUINnt32
AiUINnt32
AiUInt32

g_ulBoardHandle =
g_ulPortlHandle
g_ulPort2Handle =
g_pUdplPortlHandle

g_pUdp2PortlHandle =
g_pUdplPort2Handle =
g_pUdp2Port2Handle =

char

g stop;

0
0; // acts as Tx
0; // acts as Rx

7~y
AM

RIGHT ON TARGET

ARINC664 / AFDX Programmer’s Guide

123

7~y
AM

RIGHT ON TARGET

The main program provides an overview of the order of any basic application program:

Initialization--->Board setup--->Port Setup--->Frame-Data Setup for Tx--->
Monitor Setup for Rx--->StartTx/Rx

After starting Tx/Rx - MyFdxGetStatus provides user controlled action for:
1. Check Tx Status
2. Check Rx Status
3. Exit

Each local function contains the API function calls required to perform these capabilities.

int main(int argc, char* argvl[])

{

/*--- 1init application interface, query resources on local server and login to get valid

handles */

printf ("\n");

printf ("Performing API initialization and local resource login..\n");
if (MyFdxInit())

{

printf ("API initialized, Login successful\n");

//--- reset

printf ("\nPerforming board-reset and syncronizing IRIG to PC-Time...\n");
MyFdxResetBoard() ;

printf ("\nPerforming port-resets...\n");

MyFdxResetPort () ;

printf ("Press Any key to continue\n");

getchar();

//--- setup

printf ("\nPerforming Tranmitter setup on Port 1...\n");
MyFdxSetupTxPort () ;

printf ("\nPerforming Receiver setup on Port 2...\n");
MyFdxSetupRxPort () ;

//--- Start Receiver
printf ("\nPerforming Receiver startup...\n");
MyFdxStartRx () ;

//--- Start Transmitter
printf ("\nPerforming Transmitter startup...\n");
MyFdxStartTx () ;

}

else

{

printf ("API Open Failure!!!\n");
}
MyFdxGetStatus () ;

return 0;

ARINCG664 / AFDX Programmer’s Guide

124

7~y
AM

RIGHT ON TARGET

[/ —mmmm e
// MyFdxInit - returns true on success
A
// Init the application interface and
// gets the global handles to local resources
[/ =mmmm e m e
bool MyFdxInit ()
{
DWORD dwTmp;
bool bRetSuccess = false;
bool bFoundLocalServer =

TY SERVER LIST *

TY SERVER LIST *

TY RESOURCE LIST ELEMENT *
TY RESOURCE LIST ELEMENT *
TY FDX CLIENT INFO

px_ServerNames
px TmpServer;
PRLE NULL;
pRLEHead = NULL;
x ClientInfo;

//--- init client-info

sprintf (x ClientInfo.ac ClApplication,
sprintf (x ClientInfo.ac ClApplicationVersion,
dwTmp = MAX FDX CLIENT HOST NAME;

::GetComputerName ((LPWSTR) (x_ClientInfo.ac ClHostName),

dwTmp = MAX_ FDX CLIENT USER NAME;
: :GetUserName ((LPWSTR) (x_ClientInfo.ac ClUser),

<4— | The first local function (called
by the main program) to be
executed performs:
false; (1) Initialization of the API

= NULL;

(2) Board login
(3) Port(s) login.

"AFDX-Sample Application");
"l.O");

sawTm®)| GetComputerName/GetUserName are
MSWindows functions that retrieve the
computer name/user name of the current
system. These values are used for the

FdxLogin function.

&dwTmp) ;

//--- application interface initialize
// and get a list of available servers
if (FdxInit (&px_ServerNames) != FDX OK)
{

/

printf ("API Open Failed!!!\n");

// free the server-list

FdxInit returns the names of available servers at
px_ServerNames. If px_ServerNames = "local", the
AFDX board is located where the API is running. If
px_ServerNames = "NULL", the end of the list has been
reached. Note: this version will only return "local".

if (px_ServerNames != NULL)
{

FdxCmdFreeMemory (px_ServerNames, px_ServerNames->ul StructId);

}

return (bRetSuccess) ;

}

// search the server-list for local server
px_TmpServer px_ServerNames;

== 0)

<-___-

If a local server was found then the local

while ((px_TmpServer != NULL) && (!bFoundLocalServer))
{
if (stricmp(px TmpServer->auc_ ServerName, "local")
{
bFoundLocalServer = true;
}
else

{

px_TmpServer px_TmpServer->px Next;

}
}

if (bFoundLocalServer)
{ // ok, we found a local server

server is searched for available AFDX
boards, using FdxQueryServerConfig.

// lets query the configuration of this server

if (FdxQueryServerConfig("local", &pRLEHead)
{

PRLE = pRLEHead;

while (pRLE != NULL)

{ //--- login to resources

switch (pRLE->ul ResourceType)
{

w

FDX_OK)

FdxQueryServerConfig will return a list of
resouces (board and port) available which will
be used as an input for FdxLogin. The following
code assumes an FDX-2 board configuration,
thus only logging into one board and two ports.

ARINC664 / AFDX Programmer’s Guide

125

7~y
AM

RIGHT ON TARGET

case RESOURCETYPE_BOARD:
if (g_ulBoardHandle == 0)
{

ARINCG664 / AFDX Programmer’s Guide 126

7~y
AM

RIGHT ON TARGET

if (FdxLogin("local",
PRIVILEGES ADMIN,

{

g_ulBoardHandle = 0;
printf ("Board Login Failure!!I™");

}

break;

case RESOURCETYPE PORT:
if (g_ulPortlHandle
{

== 0)
if (FdxLogin("local",
PRIVILEGES ADMIN,
{
g_ulPortlHandle = 0;
printf ("Port 1 Login Failure!!!\n")
}
}
else if

{

(g_ulPort2Handle == 0)

if (FdxLogin("local",
PRIVILEGES ADMIN,

{
g_ulPort2Handle = 0;
printf ("Port 2 Login Failure!!!\n")

}

break;

}

PRLE = pRLE->px Next;

}
// free the resource-list
if (pRLEHead != NULL)
{
FdxCmdFreeMemory (pRLEHead, pRLEHead->ul StructId);
}

// free the server-list
if (px_ServerNames != NULL)
{

&x ClientInfo, pRLE->ul ResourcelD,
&g ulBoardHandle)

!= FDX OK)

FdxLogin returns the handle for the
board or port resource.

&x ClientInfo, pRLE->ul ResourcelD,
&g _ulPortlHandle)

!= FDX_OK)

’

&x ClientInfo, pRLE->ul ResourcelD,
&g _ulPort2Handle)

!= FDX OK)

’

The memory allocated when either
resources were found using
FdxQueryServerConfig, or server was
found using FdxlInit, must be released
prior to termination of the program.

o

FdxCmdFreeMemory (px_ServerNames, px_ ServerNames->ul StructId);

}

// we define it as success if we have valid handles for all global variables....

bRetSuccess = = 0) &&

(g_ulBoardHandle

return bRetSuccess;

(g_ulPortlHandle

!= 0) && (g _ulPort2Handle != 0);

/=
// MyFdxResetBoard
=
void MyFdxResetBoard() l(,
{

int 1i;

AiUInt32 ul Mode;

time t loc time;

struct tm * ptm;

TY FDX BOARD CTRL_IN
TY FDX BOARD CTRL OUT

x_BoardCtrlIn;
x_BoardCtrlOut;

The second local function (called by the
main program) demonstrates two System
(Board-level) functions to:

(1) Configure each port as either single or
redundant, and set up the network bit
rate (default, as in this case, is 100
Mbps)

(2) Initialize the internal Board IRIG time.

ARINC664 / AFDX Programmer’s Guide

7~y
AM

RIGHT ON TARGET

TY FDX IRIG TIME

memset (&x IrigTime,

memset (&x BoardCtrlIn, 0, sizeof (x BoardCtrlIn));

x IrigTime;

0, sizeof(x IrigTime));

memset (&x_BoardCtrlOut, 0, sizeof (x BoardCtrlOut));

if (g_ulBoardHandle
{
//--- 1init input

> 0)

structure

for (i=0; i<FDX MAX BOARD PORTS; i++)

{

x_BoardCtrlIn.
x_BoardCtrliIn.

}

x_BoardCtrlIn.ul

//--- reset board

aul PortConfig[i] = FDX SINGLE;
aul ExpertMode[i] = FDX EXPERT MODE;

RxVeriMode = FDX BOARD VERIFICATION TYPE DEFAULT;

if (FDX_OK != (FdxCmdBoardControl (g ulBoardHandle,
FDX WRITE, &x BoardCtrlIn, &x BoardCtrlOut)))
for (i=0; i<FDX MAX BOARD PORTS; i++)

{

x_BoardCtrlIn.aul PortConfig[i] = FDX SINGLE;

x BoardCtrlIn.aul ExpertMode[i]

}

x BoardCtrllIn.

ul RxVeriMode = FDX BOARD VERIFICATION TYPE DEFAULT;

= FDX EXPERT MODE;

//--- reset board P — | Using) FdxC_mdBoardCorjtroI,
if (FDX_OK != (FdxCmdBoardControl (g ulBoardHandle, each port is configured as a single
FDX WRITE, &x BoardCtrlIn, &x BoardCtrlOut))) port and the network bit rate is set
{
printf ("Board Reset Failure!!!\n"); to _Fhe_ defaun_ 100 hﬂbp&
} Verification mode is set to default
else which means the firmware will
{ , L determine the program-specific
printf ("Board Initialized\n"); board in use and setup the
} e . .
verification register accordingly.
//--- sync board-internal irigtime-source with PC-time
loc_time = time (NULL) ;
ptm = localtime (&loc_time);
if (ptm != NULL)
{
x IrigTime.ul Day = ptm->tm_yday + 1; /* tm.YearOfDay is ZeroBased but we are
OneBased */
x IrigTime.ul Hour = ptm->tm hour;
®_IrigTime.ul Min = ptm->tm_min; Using FdxCmdIrigTimeControl, the Board
¥_IrigTime.ul Second = ptm->tm_sec; internal IRIG time can be synchronized to
x IrigTime.ul MilliSec = 0;
x_IrigTime.ul MicroSec = 0; any time required by your application, in
this case it is synched to the local PC time.
Note: An external IRIG source can be used.
In that case, initializing the internal IRIG
time would not be applicable.
if (FDX OK != (FdxCmdIrigTimeControl (g ulBoardHandle, FDX IRIG WRITE, &x IrigTime,
&ul Mode)))

{

printf ('

}

else

{

printf ('

'IRIG sync succes

'"IRIG sync failure!!!\n");

ARINCG664 / AFDX Programmer’s Guide

The third local function (called by the main program)
demonstrates Port-level Transmitter and Receiver
initialization:

The user must also assign a PortMap ID to each Tx/Rx
port. This Port Map ID is a virtual 1D assigned to the
physical Port.

(a) Using multiple AFDX cards
(b) Using receive ports in redundant mode

7~y
AM

RIGHT ON TARGET

// MyFdxResetPort

void MyFdxResetPort ()
{

TY FDX PORT INIT IN x PortInitIn;
TY FDX PORT INIT OUT x PortInitOut;

if (g_ulPortlHandle > 0)
{

x_PortInitIn.ul PortMap = 1;
if (FDX OK != (FdxCmdTxPortInit (g ulPortlHandle,

{

printf ("Port 1 Reset failure!!!\n");

}

else

{

printf ("Port 1 Transmitter Initialized\n");

}

if (g_ulPort2Handle > 0)
{

x PortInitIn.ul PortMap = 2;
if (FDX ERR == FdxCmdRxPortInit (g ulPort2Handle,

{

printf ("Port 2 Reset failure!!!\n");

}

else

{

printf ("Port 2 Receiver Initialized\n");

}

[/ mmm
// MyFdxSetupTxPort
[/ =mmmmmmmmmmm o
void MyFdxSetupTxPort ()
{

TY FDX_TX MODE CTRL x_TxModeCtrl;

TY FDX TRANSMIT VL x_TxVL;

TY FDX UDP DESCRIPTION x UdpDesc;

AiUInt32 ul BytesWritten;
AiUInt32 uiBuflen;
char Buf[512];

&x_PortInitIn, &x PortInitOut)))

\

&x PortInitIn, &x

‘\

The initailized state after
FdxCmdTxPortInit is performed
includes:

(1) No Transmit Queues defined

(2) No VL created, No UPD Ports
created

(3) FdxCmdTxControl command
has no effect

PortInitOut))

The initailized state after
FdxCmdRxPortlInit is performed
includes:

(1) Global Statistics available

(2) All Virtual Links, enabled for
Activity information

(3) Chronological Receive Mode,
No VLs enabled for capturing

(4) No Trigger Control Block
Processing Enabled

100 milliseconds.

This local function is called by the main program. Now
that the board and ports have been initialized we can
setup Port 1 to transmit data as follows:

(1) Individual / UDP Port-Oriented Transmit Mode
(1) Define the VL & Sub VL characteristics
(2) Write UDP port messages created toTx port

Two Sampling ports are setup to transmit data every

ARINCG664 / AFDX Programi

Individual/lUDP-Port Oriented mode - this mode simulates the AFDX Comm
Ports (defined by ARINC-653) including:

Queuing Ports - AFDX messages are sent over several AFDX frames
(fragmentation by IP layer), no data is lost or overwritten.
Sampling Ports - AFDX messages are sent in 1 frame, data may be lost or

The end-systems, VLs, and partitions are represented by the IP-Addresses and
communication-end points are described by the UDP-Port.

7~y
AM

RIGHT ON TARGET

//--- mode control -> individual/UDP-Port oriented
x_TxModeCtrl.ul TransmitMode = FDX_ TX INDIVIDUAL;
if (FDX OK != (FdxCmdTxModeControl (g ulPortlHandle, &x TxModeCtrl))

{
printf ("Port 1 Mode Control Failure!!!\n");
}

else

{

printf ("Port 1 set to individual/UDP-oriented Transmit mode\n");

}
After setting up the mode, you then need to define the characteristics of the VL.

VL-Definitions are identified by the VL-ID. The MAC address, BAG and the
maximum frame length are properties of the VL-Definition. The VL-Definition is
the "parent” of a set of up to 4 S/Q-Ports (identified by Sub VL ID (1-4)). So if the
VL-Definition is disabled/deleted all S/Q-Ports of this VL are disabled/deleted.

//--— create vl, define communication parameters for VL 60 or Port 1

x_TxVL.ul Bag = DEF_BAG; //Bag

x TxVL.ul MACSourceLSLW = DEF SRC_MAC LSLW; //MAC Source <4— | Thr VL ID defined for
x TxVL.ul MACSourceMSLW = DEF SRC _MAC MSLW; //MAC Source : :
x_TxVL.ul MaxFramelLength= DEF FRAME MAXLENGTH;//Maximum Frame Length Port 1 is 60 with two Sub
x_TxVL.ul SubVls = DEF_SUB_VLCNT; // % of Sub VLs VLs.

x_TxVL.ul V1Id = DEF_VL; // VL

x_TxVL.ul FrameBufferSize = 0;

if (FDX OK != (FdxCmdTxCreateVL (g ulPortlHandle, &x TxVL)))
{

printf ("VL Creation on Port 1 failed!!!\n");
}

else

{
printf ("VL 60 Created on Port 1\n");
}

After setting up the VL, you then need to define the characteristics of the Sub VLS (individual S/Q port).
There can be up to 4 S/Q Ports per VL ID.

SubVL-Definitions are identified by the Sub VL-ID. The address-quintuplet (UDP, IP, VL ID) message
size and the sampling rate length are properties of the Sub VL-Definition.

This Sub VL is defined as follows:

p -SubVLID=1

--- create udp-port 1 for write on Port 1 _ :
x_UdpDesc.ul_ PortType = FDX_UDP_SAMPLING; Samp“ng Port _ .
x_UdpDesc.x_Quint.ul TpDst = DEF_DST 1P; - number of messages = 1 (for sampling port
x UdpDesc.x Quint.ul IpSrc = DEF_SRC_IP; ahNays equalu)one)
X,gipgesc-nguilnt-ui,gipgﬂ = gg?g;ggg;? - sampling rate = 100 milliseconds
x UdpDesc.x Quint.ul UdpSrc = ~ SRC_| ;
x_UdpDesc.x_Quint.ul v1Id = DEF_VL; - DEF_SRC_IP (0x0a012101)
x UdpDesc.ul SubV1lId = DEF_SUB VLIDI; - DEF DST IP (OereOOOBC)
x UdpDesc.ul UdpNumBufMessages= 1; // O=default - -
x UdpDesc.ul UdpMaxMessageSize= DEF UDP MAXMSG; - DEF_SRC_UDPl (24)
x_UdpDesc.ul UdpSamplingRate = DEF UDP_SAMPLING RATE; T AT 1 imna /Ao
if (FDX OK != (FdxCmdTxUDPCreatePort (g ulPortlHandle, &x UdpDesc, &g pUdplPortlHandle)))

{

ARINCG664 / AFDX Programmer’s Guide 130

7~y
AM

RIGHT ON TARGET

printf ("UDP Port Creation Failure on Port 1!!!\n");

}

else
{
printf ("Tx UDP Port Created on Port 1 -- VL:%d UDP Port:%d\n", DEF VL, DEF SRC UDP1);
}
This Sub VL is defined as follows:
-SubVLID =2
- Sampling Port
//--- create udp-port 2 for write on Port 1 - number of Messages = 1 (fOI’ Samp“ng pOft
x_UdpDesc.ul PortType = FDX_UDP_SAMPLING; 'ahNay§ equal to one.) .
x_UdpDesc.x Quint.ul IpDst = DEF DST IP; - sampling rate = 100 milliseconds
x UdpDesc.x Quint.ul IpSrc = DEF SRC _IP; - DEF SRC IP (Oxoaolzlol)
x UdpDesc.x Quint.ul UdpDst = DEF DST UDP2; — —
x_UdpDesc.x Quint.ul UdpSrc = DEF SRC UDP2; - DEF_DST_IP (0xe0e0003c)
x_UdpDesc.x Quint.ul V1Id = DEF VL; _
x UdpDesc.ul SubvlId = DEF_SUB VLIDZ2; DEF—SRC—UDP2 (33)
x_UdpDesc.ul UdpNumBufMessages= 1; // O=default - DEF_DST_UDP2 (34)
x_UdpDesc.ul_ UdpMaxMessageSize= DEF_UDP_MAXMSG;
x UdpDesc.ul UdpSamplingRate = DEF UDP_SAMPLING RATE;
if (FDX OK != (FdxCmdTxUDPCreatePort (g ulPortlHandle, &x UdpDesc, &g pUdp2PortlHandle)))

{

printf ("UDP Port Creation Failure on Port 1!!!\n");

}

else

{

printf ("Tx UDP Port Created on Port 1 -- VL:%d UDP Port:%d\n", DEF VL, DEF_SRC_UDP2);

}

//Write message to UDP Tx Port

if (g_pUdplPortlHandle != NULL) { .
sprintf (Buf, "Testing UDP Port"); Now write UDP port 1 message created above
uiBuflLen = (AiUInt32)strlen (Buf);
if (FDX OK != (FdxCmdTxUDPWrite (g ulPortlHandle, g pUdplPortlHandle, uiBuflLen,

(const void *) Buf, &ul BytesWritten))) {
printf ("UDP Transmit Port Write failure!!!\n");

}

else {

printf ("$d bytes written to UDP Port -- VL:%d UPD Port:%d\n", ul BytesWritten,

DEF VL, DEF SRC UDP1);
}

}
//Write message to UDP Tx Port

sprintf (Buf, "Testing UDP Port");
uiBuflen = (AiUInt32)strlen (Buf);

if (g_pUdp2PortlHandle != NULL) { ‘/,

Now write UDP port 2 message created above

if (FDX OK != (FdxCmdTxUDPWrite (g ulPortlHandle, g pUdp2PortlHandle, uiBuflLen, (const void

*) Buf, &ul BytesWritten))) {

printf ("UDP Transmit Port Write failure!!!\n");

}

else {

printf ("$d bytes written to UDP Port -- VL:%d UDP Port:%d\n", ul BytesWritten, DEF VL,

DEF SRC_UDP2) ;

}

B »~ | This local function (called by the main program) will

// MyFdxSetupRxPort

void MyFdxSetupRxPort ()

{
TY FDX RX MODE CTRL IN x ModeCtrlIn;
TY FDX RX MODE_CTRL OUT x ModeCtrlOut;

configure the Receive Port to capture the data
transmitted by Portl. (Assuming the appropriate
ethernet connection has been configured between ports 1
and 2). Port 2 will be setup as follows:

(1) VL-Oriented Receive Mode
(2) Continuous Capture

ARINC664 / AFDX Programmer’s Guide

(3) Create monitor queue to receive the captured data.

7~y
AM

RIGHT ON TARGET

TY FDX RX VL CTRL % VLControl;
TY FDX RX VL DESCRIPTION x VLDesc;
TY FDX UDP DESCRIPTION x UdpDesc;

// initialize structures
memset (&x_VLControl,0,sizeof (TY FDX RX VL CTRL));
memset (&x_VLDesc,0,sizeof (TY FDX RX VL DESCRIPTION));

//--- mode control -> select VL-Oriented receive
x ModeCtrlIn.ul ReceiveMode = FDX RX VL;

if (FDX OK != (FdxCmdRxModeControl (g ulPort2Handle, &x ModeCtrlIn, &x ModeCtrlOut))) {
printf ("Port 2 Mode Control Failure!!!\n");

}

else {
printf ("Port 2 set to VL/UDP-oriented Receive mode\n");

}

ARINCG664 / AFDX Programmer’s Guide 132

7~y
AM

RIGHT ON TARGET

Since we are in VL-Oriented receive mode, we need to tell port 2 what VL
characteristics to look for. These characteristics will be used as a filter, and only
data matching those characteristics will be stored in the VL-Oriented receive
buffer. Filter characteristics include:

-VLID
- number of VLs affected by these settings (starting with the VL ID above)

//-—-- VL control (per VL which we want to watch)
x_VLControl.ul VLId DEF_VL;
x_VLControl.ul VLRange 1;

x VLControl.ul EnableMode
x VLControl.ul PayloadMode
X VLControl.ul TCBIndex

FDX_RX_VL_ENA EXT;
FDX_PAYLOAD FULL;
0;

x VLDesc.ul VerificationMode FDX RX VL CHECK DISA;

x_VLDesc.ul:VLBufSize 0x8000;
if (FDX OK != (FdxCmdRxVLControl (g ulPort2Handle, &x VLControl, &x VLDesc)))
{

printf ("Receive VL Control Failure!!!\n");

}
else

{
printf ("VL:%d Enabled for Capturing on Port 2\n", DEF VL);

)
Now we need to setup the receive UDP portl

- Sampling Port

- address quintuplet:
- DEF_SRC_IP (0x0a012101)
- DEF_DST _IP (0xe0e0003c)
- DEF_SRC_UDP1 (24)
- DEF_DST_UDP1 (23)

- number of messages = 1 (for sampling port - always equal to one.)

//--- create udp-port for read
x_UdpDesc.ul_ PortType
x_UdpDesc.x Quint.ul TIpDst

x UdpDesc.x Quint.ul IpSrc
x_UdpDesc.x_Quint.ul UdpDst
x_UdpDesc.x_Quint.ul_ UdpSrc

x _UdpDesc.x Quint.ul V1Id DEF_VL;
x_UdpDesc.ul UdpNumBufMessages= 1; // O=default
x_UdpDesc.ul_UdpMaxMessageSize= DEF_UDP_MAXMSG;

FDX_UDP_SAMPLING;
DEF_DST IP;

DEF SRC_IP;
DEF_DST UDP1;
DEF_SRC_UDP1;

if (FDX OK != FdxCmdRxUDPCreatePort (g ulPort2Handle, &x UdpDesc, &g pUdplPort2Handle))
{
printf ("Receive UDP Port Creation Failure!!!n");
}
else
{
printf ("Rx UDP Port Created on Port 2 -- VL:%d UDP Port:%d\n", DEF VL, DEF DST UDP1);
}

ARINCG664 / AFDX Programmer’s Guide 133

7~y
AM

RIGHT ON TARGET

- Sampling Port
- address quintuplet:

- DEF_SRC_UDP2 (33)
- DEF_DST_UDP2 (34)

Now we need to setup the receive UDP port2

- DEF_SRC_IP (0x0a012101)
- DEF_DST_IP (0xe0e0003c)

- number of messages = 1 (for sampling port - always equal to one.)

//--- create udp-port for read

x_UdpDesc.ul_ PortType = FDX UDP_ SAMPLING;
x UdpDesc.x Quint.ul IpDst = DEF DST IP;

x UdpDesc.x Quint.ul IpSrc = DEF SRC IP;

x UdpDesc.x Quint.ul UdpDst = DEF DST UDP2;

x UdpDesc.x Quint.ul UdpSrc = DEF_SRC UDP2;

x UdpDesc.x Quint.ul V1Id = DEF VL;

x_UdpDesc.ul UdpNumBufMessages= 1; // O=default
x_UdpDesc.ul_ UdpMaxMessageSize= DEF_UDP_MAXMSG;

if (FDX OK != FdxCmdRxUDPCreatePort (g ulPort2Handle, &x UdpDesc, &g pUdp2Port2Handle)) {
printf ("Receive UDP Port Creation Failure!!!n");

}

else(
printf ("Rx UDP Port Created on Port 2 -- VL:%d UDP Port:%d\n", DEF VL, DEF DST UDP2);

}
}
e e e P EEr e
;;_Dfi_’f‘ffffffff _________________________ <— | This local function (called by the main program) will
void MyFdxStartTx () start the transmission of AFDX frames via Portl. Send
{ configuration includes:

TY FDX TX CTRL x TxControl;

(1) Send the AFDX frame cyclically (ul_Count = 0)

x TxControl.ul Count = 0;
x_TxControl.e StartMode = FDX START; (2) Setup to start immediately (vs. wait for trigger)
if (g_ulPortlHandle != NULL)
{

if (FDX OK != (FdxCmdTxControl (g ulPortlHandle, &x TxControl))) {

printf ("Failure to start transmitter\n");
}
else {

printf ("Transmitter started\n");

}

/= / -

// MyFdxReceive

void MyFdxStartRx ()
{
TY FDX RX CTRL x_RxControl;
if (g_ulPort2Handle != NULL)
{
x_RxControl.ul StartMode

This local function (called by the main program) will
start the reception of AFDX frames via Port2. Receive
configuration includes:

(1) Receive start
(2) Reset all counters prior to receive start

FDX START;

x_RxControl.ul GlobalStatisticReset = FDX RX GS_RES ALL CNT;

if (FDX OK != (FdxCmdRxControl (g ulPort2Handle, &x RxControl))) {

printf ("Failure to start Receiver!!!\n");
}
else {

printf ("Receiver Started\n");

}

ARINCG664 / AFDX Programmer’s Guide

134

7~y
AM

RIGHT ON TARGET

/o m e e e e

// MyFdxStopTx <— | This local function (called by vyrdaxGetstatus) will stop
T the transmission of AFDX f ia Portl

void MyFdxStopTx () e transmission o rames via Port1.

{

TY FDX TX CTRL x_TxControl;

x_TxControl.ul Count = 0;
x TxControl.e StartMode = FDX STOP;

if (FDX_ERR == FdxCmdTxControl (g ulPortlHandle, &x TxControl))
{
printf ("FdxCmdTxControl Error");

[/ ==

[MEasStoRRE <— | This local function (called by yrdxcetstatus) will stop
void MyFdxStopRx () the reception of AFDX frames via Port2.

{

TY FDX RX CTRL x RxControl;

x_RxControl.ul StartMode = FDX STOP;
x RxControl.ul GlobalStatisticReset = FDX RX GS RES ALL CNT;

if (FDX OK != (FdxCmdRxControl (g ulPort2Handle, &x RxControl)))
{
printf ("FdxCmdRxControl Error");

J
// MyFdxGetStatus <— | This local function (called from the main program)
//'_;1_»_4_;;1_(;_;;_;_“()_ ““““““““““““““ allows the user to select the action to be taken by the
‘{’Ol yraxbebotatus program including:

char 1 command[10];

bool 1_continue = TRUE; 1 - Get Tranmsmitter Status

TY FDX TX STATUS x_TxStatus; 2 - Get Receiver Status

TY FDX TX UDP_STATUS x_UdpTxStatus; .

TY FDX_RX_STATUS x RxStatus; x - Exit the program

TY FDX RX UDP_STATUS x_UdpRxStatus;

AiUInt32 ul Control;
TY FDX RX GLOB STAT x GlobalStatisticA, x GlobalStatisticB;

while (1 continue == TRUE)

{
printf ("\r\n 'l' Get Transmitter Status\n");
printf ("™ '2' Get Receiver Status\n");
printf (" 'x' Exit\n");
printf ("Select a Command: ");

scanf ("%s", 1 command) ;

switch (1 _command[O0])

{

case 'l1l':
{
// Retrieve Transmitter Status 1 - Get Tranmsmitter Status
printf ("\nTransmitter Status:\n"); ‘(///

if (FDX OK != (FdxCmdTxStatus (g _ulPortlHandle, &x TxStatus)))
{

printf ("FdxCmdTxStatus Error\n") ;
}

ARINCG664 / AFDX Programmer’s Guide 135

7~y
AM

RIGHT ON TARGET

printf ("Port 1 Status: ");
switch (x TxStatus.e Status)
{
case FDX STAT_ STOP:
printf ("Stopped\n") ;
break;
case FDX STAT RUN:
printf ("Running\n") ;

break;
case FDX STAT ERROR:

printf ("Error\n"); 1 - Get UDP Portl Status
}
if (FDX_OK != (FdxCmdTxUDPGetStatus(g_ulPortlHandle,

g pUdplPortlHandle, &x UdpTxStatus)))
{
printf ("FdxCmdTxUDPGetStatus Error\n");
}

printf ("UDP Message count (VL:%d UDP Port:%d): %d\n", DEF VL,
DEF_SRC UDP1, x UdpTxStatus.ul MsgCount);

1 - Get UDP Port2 Status

if (FDX OK != (FdxCmdTxUDPGetStatus (g ulPortlHandle,
g_pUdp2PortlHandle, &x UdpTxStatus)))

{
printf ("FdxCmdTxUDPGetStatus Error\n");

}

printf ("UDP Message count (VL:%d UDP Port:%d): %d\n", DEF VL,
DEF SRC UDP2, x UdpTxStatus.ul MsgCount);

break;

o, 2 - Get Receiver Status
casT /

// Retrieve Receiver Status
printf ("\nReceiver Status:\n");

if (FDX OK != (FdxCmdRxStatus (g ulPort2Handle, &x RxStatus)))
{

printf ("FdxCmdRxStatus Error\n");
}

printf ("Port 2 Status: ");

switch (x RxStatus.ul Status)

{

case FDX STAT STOP:
printf ("Stopped\n") ;
break;

case FDX_ STAT RUN:
printf ("Running\n") ;
break;

case FDX STAT ERROR:
printf ("Error\n");
break;

}

ul Control = FDX_RX_GS_RES_NO CNT;
if (FDX_OK != (FdxCmdRxGlobalStatistics(g_ulPort2Handle,
ul Control, &x GlobalStatisticA, &x GlobalStatisticB)))
{
printf ("\nFdxCmdRxGlobalStatistics Error");
}

printf ("Port 2 Global Statistics:\n");
printf ("Good Frame Count: %d\n",

lobal isticA.ul F ; : L
x_GlobalStatistich.ul FrameGoodCount) Local function call MyFdxGetviactivity

will retrieve the frame count for the
number of active virtual links.

ARINCG664 / AFDX Programmer’s Guide v 136

7~y
AM

RIGHT ON TARGET

printf ("Bad Frame Count: %d\n",
x_GlobalStatisticA.ul_ FrameErrorCount) ;

//--- Get VL Activity

MyFdxGetVLActivity () ; / 1 - Get UDP1 Port2 Status
//--- Get UDP port Status

if (FDX_OK != (FdxCmdRxUDPGetStatus(g_ulPort2Handle,

g_pUdplPort2Handle, &x UdpRxStatus)))

{
printf ("FdxCmdRxUDPGetStatus Error");

}

printf ("UDP Port 1 Message Count: %d\n", x UdpRxStatus.ul MsgCount);
printf ("UDP Port 1 Error Count: %d\n", X UdpRxStatus.ul MsgErrorCount);

//--- Get UDP port Status 1 - Get UDP2 Port2 Status

if (FDX_OK != (FdxCmdRxUDPGetStatus (g _ulPort2Handle,
g _pUdp2Port2Handle, &x UdpRxStatus)))

{
printf ("FdxCmdRxUDPGetStatus Error");

}

printf ("UDP Port 2 Message Count: %$d\n", x UdpRxStatus.ul MsgCount) ;
printf ("UDP Port 2 Error Count: %d\n", x UdpRxStatus.ul MsgErrorCount);

break;

case 'x': / x - Exit Program

{

//Exit Application

//-~= Stop Tx/Rx, logout, and free ha“dlei/ See the local functions for API
MyFdxStopTx () ; A N
MyFdxStopRx () ; function calls required.
MyFdxFreeResources () ;
1 continue = FALSE; ‘k\‘----~
break;
} Resources should be freed before
default: exit. See the local function
; MyFdxFreeResources for
: } API function calls required.
}
/=
// MyFdxGetVLActivity / Local function call MyrdxGetviActivity
T will retrieve the frame count for the

void MyFdxGetVLActivity ()

{

number of active virtual links.

TY FDX RX VL ACTIVITY IN x VLActivityIn;
TY FDX RX VL ACTIVITY OUT x VLActivityOut;
TY FDX RX VL ACTIVITY * px VLActivity;

%x_VLActivityIn.ul Mode = FDX RX VL ACT ALL;

x VLActivityIn.ul MaxReadBytes = 10*sizeof (TY FDX RX VL ACTIVITY);
x VLActivityOut.pax VLActivity =

(TY FDX RX VL ACTIVITY*)malloc (10*sizeof (TY FDX RX VL ACTIVITY));

if (FDX OK != (FdxCmdRxVLGetActivity(g ulPort2Handle, &x VLActivitylIn,
&x_VLActivityOut)))
{
printf ("\nFdxCmdRxVLGetActivity Error");
}

ARINCG664 / AFDX Programmer’s Guide 137

7~y
AM

RIGHT ON TARGET

printf ("Number of Active VLs: %d\n", x VLActivityOut.ul NumOfActivVL);
px VLActivity = x VLActivityOut.pax VLActivity;

AiUInt32 i;

for (i=1; (i <= x VLActivityOut.ul NumOfActivVL); i++)
{

printf ("VLid: %d Frame Count: %d\n", px VLActivity->ul VLIdent,

px_VLActivity->ul FrameCountA);
px VLActivity++;

ARINCG664 / AFDX Programmer’s Guide 138

7~y
AM

RIGHT ON TARGET

void MyFdxFreeResources ()

{
if
{
if
{

}

if
{

}

if
{

(g_ulBoardHandle

!=0)

(FDX_ERR

FdxLogout (g_ulBoardHandle))

printf ("FdxLogout Board Error");

This local function is called prior to termination of
the program within the MyFdxGetStatus local
function. this function demonstrates:

(1) Logout of each board/port resource using
FdxLogout and.

(2) Deletion of the UDP ports associated with the
physical port using FdxCmdTxUDPDestroyPort
and FdxCmdRxUDPDestroyPort

(g_ulPortlHandle != 0)
if (g _pUdplPortlHandle != NULL)
{
if (FDX ERR == FdxCmdTxUDPDestroyPort (g ulPortlHandle, g pUdplPortlHandle))
{
printf ("FdxCmdTxUDPDestroyPort Error 1");
}
}
if (g_pUdp2PortlHandle != NULL)
{
if (FDX_ERR == FdxCmdTxUDPDestroyPort (g ulPortlHandle, g pUdp2PortlHandle))
{
printf ("FdxCmdTxUDPDestroyPort Error 1");
}
}
if (FDX _ERR == FdxLogout (g ulPortlHandle))

printf ("FdxLogout Error 1");

(g_ulPort2Handle != 0)
if (g_pUdplPort2Handle != NULL)
{
if (FDX_ERR == FdxCmdRxUDPDestroyPort (g ulPort2Handle, g pUdplPort2Handle))

{

printf ("FdxCmdRxUDPDestroyPort Error 2");

}
}

if (g_pUdp2Port2Handle != NULL)
{
if (FDX_ERR == FdxCmdRxUDPDestroyPort (g ulPort2Handle, g pUdp2Port2Handle))
{
printf ("FdxCmdRxUDPDestroyPort Error 2");
}
}
if (FDX _ERR == FdxLogout (g ulPort2Handle))

printf ("FdxLogout Error 2");

ARINC664 / AFDX Programmer’s Guide

139

7~y
AM

RIGHT ON TARGET]

5.2.2 Generic Transmission/Chronological Monitor Reception Sample

This sample demonstrates how to:

1. Query available resources and login to a local board and two ports.
2. Reset the board and synchronize board-IRIG-time with PC-time.
3. Setup Port 1 for Generic transmit mode i.e., a list of AFDX frames with

additional header information can be sent from a specified queue cyclically or a
specific number of times

s A UDP and IP checksum computation is performed and checksum entered

4. Setup Port 2 to capture using the Chronological Monitor Receive mode i.e., Data
of all enabled links are stored in one large chronological monitor buffer.

5. Portl sends data to Port2. (an ethernet connection between Port 1 and Port 2 is
required.)
#include "stdafx.h"

stfafx.h - MSWindows standard system
4,’,,—”””, include files or project specific
include files that are used
#include <time.h>

aifdx_def.h header file is the only header file
tinelude "aifdx def.n / required for inclusion to support the AIM API. It
- contains the constant, structure and function
definitions used in the API.

bool MyFdxInit(); <— | Function defintions used for

void MyFdxFreeResources () ; functions defined within this
void MyFdxResetBoard() ; program

void MyFdxResetPort () ;
void MyFdxSetupTxPort () ;
void MyFdxSetupRxPort () ;
void MyFdxStartTx () ;

void MyFdxStartRx () ;

void MyFdxStopTx() ;

void MyFdxStopRx() ;

void MyFdxGetStatus() ;
void MyFdxGetVLActivity() ;

T
// Globals

/=

AiUInt32 g ulBoardHandle = O0; ¢

AiUInt32 g ulPortlHandle = 0; // acts as Tx A handle (ID) for the board
AiUTnt32 g ulPort2Handle = 0; // acts as Rx and each port on the board
AiUINnt32 g ulQueueld = 0; is required.

char g _stop;

ARINCG664 / AFDX Programmer’s Guide 140

7~y
AM

RIGHT ON TARGET

The main program provides an overview of the order of any basic application program:

Initialization--->Board setup--->Port Setup--->Frame-Data Setup for Tx--->
Monitor Setup for Rx--->StartTx/Rx

After starting Tx/Rx - MyFdxGetStatus provides user controlled action for:
1. Check Tx Status
2. Check Rx Status
3. Read from Monitor Queue
4. Exit

Each local function contains the API function calls required to perform these capabilities.

int main(int argc, char* argvl[])

{

/*--— init application interface, query resources on local server and login to get valid
handles */

printf ("\n");

printf ("Performing API initialization and local resource login..\n");

if (MyFdxInit())

{

printf ("API initialized, Login successful\n");

//--- reset

printf ("\nPerforming board-reset and syncronizing IRIG to PC-Time...\n");
MyFdxResetBoard() ;

printf ("\nPerforming port-resets...\n");

MyFdxResetPort () ;

printf ("Press Any key to continue\n");

getchar();

//--- setup

printf ("\nPerforming Tranmitter setup on Port 1...\n");
MyFdxSetupTxPort () ;

printf ("\nPerforming Receiver setup on Port 2...\n");
MyFdxSetupRxPort () ;

//--- Start Receiver
printf ("\nPerforming Receiver startup...\n");
MyFdxStartRx () ;

//--- Start Transmitter
printf ("\nPerforming Transmitter startup...\n");
MyFdxStartTx () ;
}
else
{
printf ("API Open Failure!!!\n");
}

MyFdxGetStatus () ;
/* use as last function to free the resource list, the device list and the server list */
if (FDX OK != FdxExit())

printf ("\r\n FdxExit () FAIL");

return 0;

ARINCG664 / AFDX Programmer’s Guide 141

7~y
AM

RIGHT ON TARGET

e e
// MyFdxInit - returns true on success
/e

// Init the application interface and

gets the global handles to local resources

bool MyFdxInit ()
{

DWORD dwTmp;
bool bRetSuccess = false;
bool bFoundLocalServer = false;

TY SERVER LIST *

TY SERVER LIST *

TY RESOURCE LIST ELEMENT *
TY RESOURCE LIST ELEMENT *
TY FDX CLIENT INFO

//--- init client-info

sprintf (x ClientInfo.ac ClApplication,

px_ServerNames =
px_TmpServer;
pRLE = NULL;
pRLEHead = NULL;
x ClientInfo;

NULL;

sprintf (x ClientInfo.ac ClApplicationVersion,
dwTmp = MAX_FDX CLIENT HOST NAME;

"1.0");

::GetComputerName ((LPWSTR) (x_ClientInfo.ac ClHostName),

dwTmp = MAX FDX CLIENT USER NAME;
: :GetUserName ((LPWSTR) (x_ClientInfo.ac ClUser),

//--- application interface initialize
// and get a list of available servers
if (FdxInit (&px ServerNames) != FDX OK)
{

printf ("API Open Failed!!!\n");

// free the server-list

if (px_ServerNames != NULL)

{

&dwTmp) ;

<
&dwTmp)

The first local function (called
by the main program) to be
executed performs:

(1) Initialization of the API
(2) Board login

(3) Port(s) login.

"AFDX-Sample Application™);

GetComputerName/GetUserName are
MSWindows functions that retrieve the
computer name/user name of the current

system. These values are used for the
FdxLogin function.

FdxInit returns the names of available servers at
px_ServerNames. If px_ServerNames = "local", the
AFDX board is located where the API is running. If
px_ServerNames = "NULL", the end of the list has been
reached. Note: this version will only return "local".

FdxCmdFreeMemory (px_ServerNames, px_ServerNames->ul StructId);

}

return (bRetSuccess) ;

}

// search the server-list for local server
px_TmpServer = px ServerNames;
while ((px TmpServer != NULL)
{

&&

if (stricmp(px_TmpServer->auc_ ServerName,
{
bFoundLocalServer = true;
}
else
{
px_TmpServer = px TmpServer->px Next;
}
}

"local")

(!bFoundLocalServer))

== 0)

‘~.___-

If a local server was found then the local
server is searched for available AFDX
boards, using FdxQueryServerConfig.

FDX_OK)

<-___-

FdxQueryServerConfig will return a list

if (bFoundLocalServer)
{ // ok, we found a local server
// lets query the configuration of this server
if (FdxQueryServerConfig("local", &pRLEHead)
{
PRLE = pRLEHead;
while (pRLE != NULL)
{ //--- login to resources

switch (pRLE->ul ResourceType)
{

of resouces (board and port) available
which will be used as an input for
FdxLogin. The following code assumes
an FDX-2 board configuration, thus
only logging into one board and two
ports.

ARINCG664 / AFDX Programmer’s Guide

142

7~y
AM

RIGHT ON TARGET

case RESOURCETYPE_ BOARD:
if (g_ulBoardHandle == 0)
{
if (FdxLogin("local",
&g ulBoardHandle)
{

!= FDX OK)

g_ulBoardHandle = 0;
printf ("Board Login Failure!!!\n");

&x ClientInfo, pRLE->ul ResourcelD,

PRIVILEGES ADMIN,

} } —

break;

case RESOURCETYPE_ PORT:

FdxLogin returns the handle for the
board or port resource.

if (g_ulPortlHandle
{

- 0)

if (FdxLogin("local",
&g _ulPortlHandle)
{

!= FDX_OK)

g_ulPortlHandle = 0;
printf ("Port 1 Login Failure!!!\n");
}
}

else
if (g_ulPort2Handle == 0)
{
if (FdxLogin("local",&x ClientInfo,pRLE->ul ResourcelD,
&g ulPort2Handle) != FDX OK)
{
g _ulPort2Handle = 0;
printf ("Port 2 Login Failure!!!\n");
}
}
break;

}

PRLE = pRLE->px Next;

&x ClientInfo, pRLE->ul ResourcelD,

PRIVILEGES ADMIN,

PRIVILEGES ADMIN,

free the resource-list
(pRLEHead != NULL)

e

FdxCmdFreeMemory (pRLEHead, pRLEHead->ul StructId);

free the server-1list
(px_ServerNames != NULL)

The memory allocated when either
resources were found using
FdxQueryServerConfig, or server was
found using FdxlInit, must be released
prior to termination of the program.

FdxCmdFreeMemory (px_ServerNames, px_ ServerNames->ul StructId);

// we define it as success if we have valid handles for all global variables....

bRetSuccess = (g_ulBoardHandle != 0) && (g_ulPortlHandle

return bRetSuccess;

'=0)

&& (g _ulPort2Handle != 0);

ARINC664 / AFDX Programmer’s Guide

143

7~y
AM

[RIGHT ON TARGET]
/= :
// MyFdxResetBoard e The second local function (called by the
//'_(_i_b_/l_;c_i_l;___;];___c_i_()_ “““““““““““““““““““““ main program) demonstrates two System
VOl XxRrese oar .
{ v (Board-level) functions to:
int i;
AiUInt32 ul_Mode; (1) Configure each port as either single or
Ziﬁiéi o }];i;Ttlme; redundant, and set up the network bit
TY FDX BOARD CTRL_IN x_BoardCtrlin; rate (default, as in this case, is 100
TY FDX BOARD CTRL OUT x BoardCtrlOut; Mbps)
TY FDX IRIG_TIME x IrigTime;

(2) Initialize the internal Board IRIG time.

if (g_ulBoardHandle > 0)
{ o Using FdxCmdBoardControl, each

//--- 1init input structure : . .
port is configured as a single port and

for (i=0; i<FDX_ MAX BOARD PORTS; i++) - '
(the network bit rate is set to the
x BoardCtrlIn.aul PortConfig[i] = FDX SINGLE; default 100 MbpS. Verification mode
x BoardCtrlIn.aul ExpertMode[i] = FDX EXPERT MODE; is set to default which means the

} . . .
x BoardCtrlIn.ul RxVeriMode — FDX BOARD VERIFICATION Type | firmware will determine the program-

specific board in use and setup the
verification register accordingly.

//--- reset board
if (FDX OK != (FdxCmdBoardControl (g ulBoardHandle, FDX WRITE, &x BoardCtrlIn,
&x BoardCtrlOut)))

{

printf ("Board Reset Failure!!!\n");
}

else

{
printf ("Board Initialized\n");

}

//--- sync board-internal irigtime-source with PC-time
loc_time = time (NULL) ;
ptm = localtime (&loc_time);
memset (&x_IrigTime, 0, sizeof(x_IrigTime));
if (ptm != NULL)
{
x IrigTime.ul Day = ptm->tm_yday + 1; // tm.YearOfDay is ZeroBased but we are
OneBased
x IrigTime.ul Hour = ptm->tm hour;
x_TrigTime.ul Min = ptm->tm min; Using FdxCmdlIrigTimeControl, the Board
¥ _IrigTime.ul Second = ptm->tm sec; internal IRIG time can be synchronized to
any time required by your application, in
this case it is synched to the local PC time.
Note: An external IRIG source can be used.
In that case, initializing the internal IRIG
time would not be applicable.
if (FDX OK != (FdxCmdIrigTimeControl (g ulBoardHandle, FDX IRIG WRITE, &x IrigTime,
&ul Mode)))

{

printf ("IRIG sync failure!!!\n");
}
else
{

printf ("IRIG sync successfull\n");
}

}

ARINCG664 / AFDX Programmer’s Guide 144

)

RIGHT ON TARGET]

/e The third local function (called by the main program)
void MyFdxResetPort () demonstrates Port-level Transmitter and Receiver
{ initialization:

The user must also assign a PortMap ID to each Tx/Rx
port. This Port Map ID is a virtual ID assigned to the
physical Port. The Receive PortMap ID is contained in
the data read from the monitor queue
(FdxCmdMonQueueRead). The Portmap ID aids in the
identification of the physical port from which the data
came, especially for applications

TY FDX PORT INIT IN x PortInitIn;
TY FDX PORT INIT OUT x PortInitOut;

if (g _ulPortlHandle > 0) (a) Using multiple AFDX cards
{ (b) Using receive ports in redundant mode
x PortInitIn.ul PortMap = 1;
if (FDX OK != (FdxCmdTxPortInit (g ulPortlHandle, &x PortInitIn, &x PortInitOut)))
{
printf ("Port 1 Reset failure!!!\n"); “\\\\\~ e .
) The initailized _ _state after
else FdxCmdTxPortInit is performed
{ includes:
printf ("Port 1 Transmitter Initialized\n");
)) (1) No Transmit Queues defined
(2) No VL created, No UPD Ports
created

(3) FdxCmdTxControl command

has no effect
if (g_ulPort2Handle > 0)

{
x_PortInitIn.ul PortMap = 2;

if (FDX ERR == FdxCmdRxPortInit (g ulPort2Handle, &x PortInitlIn, &x PortInitOut))
{
printf ("Port 2 Reset failure!!!\n"); \
;lse The initailized state after
(FdxCmdRxPortInit is performed
printf ("Port 2 Receiver Initialized\n"); includes:

}

(1) Global Statistics available

} (2) All Virtual Links, enabled for
Activity information

(3) Chronological Receive Mode,
No VLs enabled for capturing

(4) No Trigger Control Block
Processing Enabled

ARINCG664 / AFDX Programmer’s Guide 145

7~y
AM

[RIGHT ON TARGET]

e e EEEEE PP PP e
// MyFdxSetupTxPort <— | This local function is called by the main program. Now
éé;&‘&;;&;g;;g;;;;;a)‘ ““““““““““““““““ that the board and ports have been initialized we can
(setup Port 1 to transmit data as follows:

TY FDX TX MODE CTRL x_TxModeCtrl;

TY FDX TX QUEUE SETUP x TxQueueCreate; (1) Generic Transmit Mode

iiaiiifﬁﬂggimm x_TxQueuelnto; (2) Initialize a Transmit queue for data transmission

struct my Frame tag (3) Define the data to be transmitted in the queues and

{ the frame attributes including protocol and error

TY_FDX_TX_FRAME_HEADER x_Frame; injection

AiUInt8 uc Data[1000];
} My Frame; . ..
Two AFDX frames are setup for cyclic transmission

int i;
Generic mode - in this mode, the user creates a list
of AFDX frames which can be sent cyclically or a
specified number of times.

//--- mode control -> Set TX port to Generic mode

x TxModeCtrl.ul TransmitMode = FDX TX GENERIC;

if (FDX OK != (FdxCmdTxModeControl (g ulPortlHandle, &x TxModeCtrl)))

{
printf ("Port 1 Mode Control Failure!!!\n");
}
else
{
printf ("Port 1 set to Generic Transmit mode\n");

}

Memory must be allocated for the storage of the
frames to be transmitted. One queue is used for
one port. If the queue size is zero, the default
queue size will be selected.

//--- Create Generic Tx Message Queue
// 0 Creates a queue of default size.
x TxQueueCreate.ul QueueSize = 0;
if (FDX OK != (FdxCmdTxQueueCreate (g ulPortlHandle, &x TxQueueCreate, &x TxQueueInfo)))
{
printf ("Message Queue Creation failure!!!\n");
}
else

{
printf ("Message Queue Created\n");

}

TY_FDX_TX-FRAME_ATTRIB is the structure within

TY FDX TX FRAME HEADER used to define the attributes (non-
data) of the frame. The following frame attributes will be used for
both frames (Frames 1 and 2) written to the transmit queue.

//--- Create 2 Frames for the Tx Queue

My Frame.x Frame.uc_ FrameType = FDX TX FRAME STD;

My Frame.x Frame.x FrameAttrib.uw FrameSize = 64; //bytes (includes CRC)

My Frame.x Frame.x FrameAttrib.ul InterFrameGap = 25; // 25=lusec; 1000=40usec;

My Frame.x Frame.x FrameAttrib.ul PacketGroupWaitTime = 1000; // 1000=Ilmsec; O=0Ousec;

My Frame.x Frame.x FrameAttrib.uc PayloadBufferMode = FDX TX FRAME PBM STD;

My Frame.x Frame.x FrameAttrib.uc_PayloadGenerationMode = FDX TX FRAME PGM USER;

//no payload generation - all frame data defined by the user in this frame entry

My Frame.x Frame.x FrameAttrib.ul BufferQueueHandle = 0; //used when payload buffer mode
is not standard

My Frame.x Frame.x FrameAttrib.uc_ExternalStrobe = FDX DIS;

My Frame.x Frame.x FrameAttrib.uc_PreambleCount = FDX TX FRAME PRE_DEF;

My Frame.x Frame.x FrameAttrib.ul Skew = 0; // usec, used only for redundant mode

ARINCG664 / AFDX Programmer’s Guide 146

7~y
AM

RIGHT ON TARGET

My Frame.x Frame.x FrameAttrib.uc_NetSelect

redundant mode

= FDX_TX FRAME BOTH; // used only for

My Frame.x Frame.x FrameAttrib.uc FrameStartMode = FDX TX FRAME START PGWT;

My Frame.x Frame.x FrameAttrib.ul PhysErrorInjection = FDX_ TX FRAME ERR_OFF;

My Frame.x Frame.x FrameAttrib.uw SequenceNumberInit = FDX TX FRAME SEQ INIT AUTO;
My Frame.x Frame.x FrameAttrib.uw SequenceNumberOffset = FDX TX FRAME SEQ OFFS AUTO;

Now we must insert the data into Frame 1. (The structure of
the data and the fixed data inserted into the frame is defined in
the AFDX End System Detailed Functional Specification.)

First, initialize the each byte of the data buffer with
incrementing ASCII characters, starting from ASCII 0.

Then store the MAC/IP/UDP header and payload data into the
frame. The frame is defined for VL 60.

//--— Frame 1 --- VL 60
for (i =0 ; 1<1000; i++)
My Frame.uc Data[i] = (unsigned char) 1i;

//---MAC Dst= 0x03000000003c (VL 60)

Dt[0]=0x03;Dt[1]1=0x00;Dt[2]=0x00;Dt[3]=0x00;Dt[4]=0x00;Dt[5]1=0x3c;

//---MAC Src= 0x020000012120

Dt[6]=0x02;Dt[7]=0x00;Dt[8]=0x00;Dt[9]=0x01;Dt[10]=0x21;Dt[11]=0x20;

//---MAC Type/Length
Dt[12]=0x08;Dt[13]=0x00;

//---1IP Header (Version/IHL, Type of service, Total length, Fragment ID, Time to live,

// Protocol, Header Checksum)

Dt [14]=0x45;Dt[15]=0x00;Dt[16]=0x00;Dt[17]1=0x2d;Dt[18]=0x00;Dt[19]=0x00;Dt[20]=0x40;
t[21]=0x00;Dt[22]=0x01;Dt[23]=0x11;Dt[24]=0x6d;Dt[25]=0xa2;

//---1IP Source Address 10.001.33.1

Dt [26]=0x0a;Dt[27]=0x01;Dt[28]=0x21;Dt[29]=0x01;

//---1IP Destination Address 224.224.0.60 (VL 60)
Dt [30]=0xe0;Dt[31]1=0xe0;Dt[32]=0x00;Dt[33]=0%x3C;

//---UDP Source Port = 24
Dt [34]=0x00;Dt[35]=0x18;

//---UDP Dest Port = 23
Dt [36]=0x00;Dt[37]1=0x17;

//---UDP Length = 25
Dt [38]=0x00;Dt [39]=0x19;

//-—--UDP Checksum
Dt [40]=0x00;Dt[41]1=0x00;

//---AFDX Payload

t[42]=0x41;Dt[43]=0x42;Dt[44]=0x43;Dt[45]=0x44;Dt[46]=0x45;

t[47]=0x46;Dt[48
Dt [52]=0x4b; Dt [53
Dt [57] [58

1
1
1
=0x50;Dt]

=0x51;

for (i =0 ; 1<59; i++)

=0x47;Dt[49]1=0x48;Dt[50]=0x49;Dt[51]=0x4a;
=0x4c;Dt[54]=0x4d;Dt[55]=0x4e;Dt[56]=0x4f;

My Frame.uc Data[i] = (unsigned char) Dt[i];

ARINC664 / AFDX Programmer’s Guide

147

7~y

Al

RIGHT ON TARGET

Write the Frame attributes and the Framel
data to the Transmit Queue.

if (FDX OK != (FdxCmdTxQueueWrite (g ulPortlHandle,
FDX TX FRAME HEADER GENERIC,1,sizeof (My Frame), &My Frame)))
{
printf ("Write to Queue Failed!!!\n");
}
else
{

printf ("Frame successfully written to Queue\n");

}

Frame 1

//--- Frame 2 --- VL 60
for (1 =0 ; 1<1000; i++)
My Frame.uc Data[i] = (unsigned char) i; Then store the MAC/IP/UDP header and payload

frame.

Now we must insert the data into Frame 2 (also for VL60).
The UDP source and destination ports are different from

First, initialize the each byte of the data buffer with
incrementing ASCII characters, starting from ASCII 0.

data into the

//---MAC Dst= 0x03000000003c (VL 60)
Dt[0]=0x03;Dt[1]=0x00;Dt[2]=0x00;Dt[3]=0x00;Dt[4]=0x00;Dt[5]=0x3c;

//---MAC Src= 0x020000012120
Dt[6]=0x02;Dt[7]=0x00;Dt[8]=0x00;Dt[9]=0x01;Dt[10]=0x21;Dt[11]=0x20;

//---MAC Type/Length
t[12]=0x08;Dt[13]=0x00;

//---1IP Header (Version, IHL, Type of service, Total length, Fragment ID, Time to live,

// Protocol, Header Checksum)

Dt [14]=0x45;Dt[15]=0x00;Dt[16]=0x00;Dt[17]=0x2d;Dt[18]=0x00;Dt[19]=0x00;Dt[20]=0x40;
Dt[21]1=0x00;Dt[22]=0x01;Dt[23]=0x11; Dt[24]=0x6d;Dt[25]=0xa2;

//---1P Source Address 10.001.33.1
Dt[26]=0x0a;Dt[27]=0x01;Dt[28]=0x21;Dt[29]=0x01;

//---1P Destination Address 224.224.0.60 (VL 60)
Dt [30]=0xe0;Dt[31]1=0xe0;Dt[32]=0x00;Dt[33]=0x3c;

//---UDP Source Port = 34
Dt [34]=0x00;Dt[35]=0x22;

//---UDP Dest Port = 33
Dt [36]=0x00;Dt[37]=0x21;

//---UDP Length = 25
Dt [38]=0x00;Dt[39]1=0x19;

//---UDP Checksum
Dt [40]=0x00;Dt[41]1=0x00;

//---Payload

Dt [42]=0x41;Dt[43]=0x42;Dt[44]=0x43;Dt[45]=0x44;Dt[46]=0x45;
Dt[47]=0x46;Dt[48]=0x47;Dt[49]=0x48;Dt[50]=0x49;Dt[51]=0x4a;
Dt [52]=0x4b;Dt[53]1=0x4c;Dt[54]=0x4d;Dt[55]=0x4e;Dt[56]=0x4f;
Dt [57]=0x50;Dt[58]=0x51;

for (1 =0 ; 1<58; i++4)

My Frame.uc Data[i] = (unsigned char) Dt[i];
if (FDX OK != (FdxCmdTxQueueWrite (g ulPortlHandle,
FDX TX FRAME HEADER GENERIC,1,sizeof (My Frame), &My Frame))) {

printf ("Write to Queue Failed!!!\n");
}
else {
printf ("Frame successfully written to Queue\n");

}

ARINCG664 / AFDX Programmer’s Guide

148

7~y
AM

RIGHT ON TARGET

ARINCG664 / AFDX Programmer’s Guide 149

7~y
AM

RIGHT ON TARGET

VO

{

id MyFdxSetupRxPort ()

TY FDX RX MODE CTRL IN x ModeCtrlIn;

TY FDX RX MODE CTRL OUT x ModeCtrlOut;

TY FDX MON_CAP MODE x MonCapMode;

TY_FDX MON_QUEUE CTRL_IN x_QueueCtrlIn;
TY_FDX MON_QUEUE CTRL_OUT x QueueCtrlOut;

This local function (called by the main program) will
configure the Receive Port to capture the data
transmitted by Portl. (Assuming the appropriate
ethernet connection has been configured between ports 1
and 2). Port 2 will be setup as follows:

(1) Chronological Receive Mode
(2) Continuous Capture
(3) Create monitor queue to receive the captured data.

/

Chronological Receive Mode - indicates that VL data streams are captured
and stored into one Monitor buffer.(vs. VL-oriented storage)

//--- mode control -> select Chrono Mode
x_ModeCtrlIn.ul ReceiveMode = FDX RX CHRONO;

~

Payload mode - allows you to store the entire frame, or other specific
portions of the frame. In this case, the entire frame is stored.

X ModeCtrlIn.ul DefaultPayloadMode

FDX_PAYLOAD_ FULL;

'

Default Chronological mode - allows you to capture all VL data,
only the good frames, or only perform statistics without capturing
the frame. In this case, all VLs are captured.

x_ModeCtrlIn.ul DefaultCronoMode =
x ModeCtrlIn.ul GlbMonBufferSize = 0;
if (FDX _OK !=
{

printf ("Port 2 Mode Control Failure!!!\n");
}
else

{

FDX RX DEFAULT MON ENA ALL;
// if zero,
(FdxCmdRxModeControl (g ulPort2Handle,

a default value will be used
&x_ModeCtrlIn, &x ModeCtrlOut)))

printf ("Port 2 Set to Chrono Monitor Receive Mode\n");

printf ("Port 2 Global Mon Buffer Size:
x ModeCtrlOut.ul GlbMonBufferSize);

%d bytes\n",

Y/

Continuous Capture mode - indicates the monitor buffer will be filled in a
cyclic manner, such that once full, the oldest frames will be overwritten.

//--- Monitor Capture Control

x_MonCapMode.ul CaptureMode =

x MonCapMode.ul Strobe = FDX MON STROBE DIS;
start or stop

if (FDX OK != (FdxCmdMonCaptureControl (g ulPort2Handle,

{

FDX_MON_CONTINUOUS;
//no strobe will be ouput on capture

&x_MonCapMode)))

printf ("Chrono Monitor Capture control failure!!!\n");

}

else

{

printf ("Chrono Monitor Capture Mode set to Continuous\n");

}

//--- Create Monitor Queue

X _QueueCtrlIn.ul QueueControl =
if (FDX_OK !=
{

printf ("Monitor Queue Creation Failure!!!\n");

}

else

{
printf ("Monitor Queue Created\n");
g_ulQueueId = x QueueCtrlOut.ul Queueld;

FDX_MON_QUEUE_CREATE;
(FdxCmdMonQueueControl (g_ulPort2Handle,

&x QueueCtrlIn, &x QueueCtrlOut)))

ARINCG664 / AFDX Programmer’s Guide

150

7~y
AM

ff_D};;é;;;;;;;;_"_"_"""""""""""‘—"_ This local function (called by the main program) will
T ———— start the transmission of AFDX frames via Portl. Send

void MyFdxStartTx () configuration includes:
{

TY FDX TX CTRL TxControl; .

- - rrontre (1) Send the AFDX frame 2 times

x_TxControl.ul Count = 2; (2) Setup to start immediately (vs. wait for trigger)

x_TxControl.e StartMode = FDX START;

if (g_ulPortlHandle != NULL)
{

if (FDX OK != (FdxCmdTxControl (g ulPortlHandle, &x TxControl)))

{

printf ("Failure to start transmitter\n");

}

else

{

printf ("Transmitter started\n");

jj‘g;;g;;;;;;; _____________________________ <— | This local function (called by the main program) will
2 start the reception of AFDX frames via Port2. Receive

void MyFdxStartRx ()

configuration includes:
{

TY FDX_RX CTRL x RxControl; .
if (g_ulPort2Handle != NULL) (1) Receive start

{ (2) Reset all counters prior to receive start

x_RxControl.ul StartMode
x RxControl.ul GlobalStatisticReset =

FDX_START;
FDX RX GS RES ALL CNT;

if (FDX_OK != (FdxCmdRxControl (g _ulPort2Handle, &x RxControl)))
{
printf ("Failure to start Receiver!!!\n");
}
else
{
printf ("Receiver Started\n");

}

ARINCG664 / AFDX Programmer’s Guide 151

7~y
AM

RIGHT ON TARGET

void MyFdxStopTx ()

{

This local function (called by myrdxcetstatus) will stop
the transmission of AFDX frames via Port1.

TY FDX TX CTRL x_TxControl;

x_TxControl.ul Count
x_TxControl.e StartMode

0;
= FDX_STOP;

if
{

(FDX_ERR FdxCmdTxControl (g_ulPortlHandle,

printf ("FdxCmdTxControl Error");

void MyFdxStopRx ()
{
TY FDX RX CTRL x RxControl;

x_RxControl.ul StartMode = FDX STOP;
x_RxControl.ul GlobalStatisticReset =

if
{

printf ("FdxCmdRxControl Error");
}

(FDX _OK != (FdxCmdRxControl (g ulPort2Handle,

&x_TxControl))

This local function (called by myrdxcetstatus) will stop
the reception of AFDX frames via Port2.

FDX_RX GS_RES ALL CNT;

&x_RxControl)))

ARINCG664 / AFDX Programmer’s Guide

152

7~y
AM

RIGHT ON TARGET

VO

{

id MyFdxGetStatus ()

char 1 command[10];

bool 1 continue = TRUE;

TY FDX TX STATUS x TxStatus;

TY FDX RX STATUS x_RxStatus;

TY FDX E MON_STATUS e MonStatus;

TY FDX MON_REC_STATUS x_ MonRecStatus;
AiUInt32 ul Control;

This local function (called from the main program)
allows the user to select the action to be taken by the
program including:

1 - Get Tranmsmitter Status

2 - Get Receiver Status

3 - Read Frame from Monitor Queue
X - Exit the program

TY FDX RX GLOB STAT x GlobalStatisticA, x GlobalStatisticB;

TY FDX MON QUEUE READ IN x QueueReadIn;
TY FDX MON QUEUE READ OUT x QueueReadOut;
AiUInt8 ReadBuffer[2000];

TY FDX FRAME BUFFER HEADER* px FrameBufferHeader;

while (1 continue == TRUE)
{

printf ("\r\n 'l' Get Transmitter Status\n");

printf ("™ '2' Get Receiver Status\n");
printf ("™ '3' Read Frame from Monitor Queue\n");
printf (" 'x' Exit\n");

printf ("Select a Command: ");

scanf ("%s", 1 command);
?witch (1_command[0]) / 1 - Get Tranmsmitter Status
case 'l':

{
// Retrieve Transmitter Status
printf ("\nTransmitter Status:\n");

if (FDX OK != (FdxCmdTxStatus (g ulPortlHandle, &x TxStatus)))

{
printf ("FdxCmdTxStatus Error\n");

}

printf ("Port 1 Status: ");
switch (x_TxStatus.e_Status)
{
case FDX STAT STOP:
printf ("Stopped\n") ;
break;
case FDX_ STAT RUN:
printf ("Running\n");
break;
case FDX_STAT ERROR:
printf ("Error\n");

}

printf ("Port 1 Frame Count: %d\n", x TxStatus.ul Frames);

break;
}
case '2':
{
// Retrieve Receiver Status
printf ("\nReceiver Status:\n");

/ 2 - Get Receiver Status

if (FDX OK != (FdxCmdRxStatus (g ulPort2Handle, &x RxStatus)))

{
printf ("FdxCmdRxStatus Error\n");
}

ARINC664 / AFDX Programmer’s Guide

153

7~y
AM

RIGHT ON TARGET

printf ("Port 2 Status: ");

switch (x RxStatus.ul Status)

{

case FDX STAT_ STOP:
printf ("Stopped\n") ;
break;

case FDX STAT RUN:
printf ("Running\n") ;
break;

case FDX STAT ERROR:
printf ("Error\n") ;
break;

}

ul Control = FDX RX GS RES NO CNT;
if (FDX OK != (FdxCmdRxGlobalStatistics (g ulPort2Handle,
ul Control, &x GlobalStatisticA, &x GlobalStatisticB)))
{
printf ("\nFdxCmdRxGlobalStatistics Error");
}

printf ("Port 2 Global Statistics:\n");

printf ("Good Frame Count: %d\n", x GlobalStatisticA.ul FrameGoodCount) ;

printf ("Bad Frame Count: %d\n", x GlobalStatisticA.ul FrameErrorCount);

printf ("Total Byte Count on Port: %d\n", x GlobalStatisticA.ul TotalByteCount);

//--- Get VL Activity : o
My FAXGeLVLACE ivity () 7 — L<_)cal fur_1ct|0n call MyFdxGetVLActivity
will retrieve the frame count for the

number of active virtual links.

Status values shown in case structure below.

j This function will indicate the status of the monitor.

//--- Monitor Status
if (FDX OK != (FdxCmdMonGetStatus (g ulPort2Handle, &e MonStatus, &x MonRecStatus)))
{

printf ("\nFdxCmdMonGetStatus Error") ;
}

printf ("Monitor Status: ");

switch (e _MonStatus)
{
case FDX MON OFF':
printf ("Not Running\n");
break;
case FDX MON_WAIT FOR_TRIGGER:
printf ("Waiting for Start Trigger\n");
break;
case FDX_MON TRIGGERED:
printf ("Monitor Triggered, Capturing Frames\n");
break;
case FDX_MON_STOPPED:
printf ("Stopped\n") ;
break;
case FDX MON_FULL:
printf ("Monitor Buffer Full\n");
}

break; 3 - Get Monitor Status
} /

case '3':

{

X_QueueReadIn.ul EntryCount = 1;

x_QueueReadIn.ul ReadQualifier = FDX MON_READ FULL;
X QueueReadIn.ul MaxReadBytes = sizeof (ReadBuffer);
X_QueueReadOut.pv_ReadBuffer = ReadBuffer;

if (FDX OK != FdxCmdMonQueueRead (g ulPort2Handle, g ulQueueld,
&x QueueReadIn, &x QueueReadOut))

ARINCG664 / AFDX Programmer’s Guide 154

7~y
AM

RIGHT ON TARGET

printf ("FdxCmdMonQueueRead Error\n") ;
}

printf ("Bytes Read: %d Frames Read: %d\n",x QueueReadOut.ul BytesRead,
X QueueReadOut.ul EntryRead);

printf ("VL from MAC Addr: %d\n", ReadBuffer[41]);

printf ("ReadBuffer[78]: %$041x\n", ReadBuffer[78]);

printf ("ReadBuffer[79]: %$041x\n", ReadBuffer[79])

’

px_FrameBufferHeader = (TY FDX FRAME BUFFER HEADER*) x QueueReadOut.pv_ReadBuffer;

printf ("V1Id: %d\n",px FrameBufferHeader->x FrameHeaderInfo.uw VI1Id);
printf ("Sequence Num: %$d\n",px FrameBufferHeader->x FrameHeaderInfo.uc_ SequenceNr) ;
break;

} .
- X - Exit Program
case X3
{ A”””—

//Exit Application

//--- Stop Tx/Rx, logout, and free handles
MyFdxStopTx () ; .
MyFdxStopRx () ; ——— | see the local functions for API
MyFdxFreeResources () ; function calls required.
1 continue = FALSE;
break;
}
default: Resources should be freed before
; exit. See the local function
) MyFdxFreeResources for
API function calls required.
}
}
/= o=
// MyFdxGetVLActivity .
S % | Local function call MyFdxGetvLActivity
void MyFdxGetVLActivity () will retrieve the frmae count for the
{ o number of active virtual links.
TY FDX RX VL ACTIVITY IN x VLActivityIn;

TY FDX RX VI, ACTIVITY OUT x VLActivityOut;
TY FDX RX VI ACTIVITY * px VLActivity;

x VLActivityIn.ul Mode = FDX RX VL ACT ALL;
%x_VLActivityIn.ul MaxReadBytes = 10*sizeof (TY FDX RX VL ACTIVITY);
x VLActivityOut.pax VLActivity =
(TY FDX RX VL ACTIVITY*)malloc (10*sizeof (TY FDX RX VL ACTIVITY));
if (FDX OK != (FdxCmdRxVLGetActivity(g ulPort2Handle, &x VLActivitylIn,
&x_VLActivityOut)))
{
printf ("\nFdxCmdRxVLGetActivity Error");
}

printf ("Number of Active VLs: %d\n", X VLActivityOut.ul NumOfActivVL);
px_VLActivity = x VLActivityOut.pax VLActivity;

AiUInt32 i;

for (i=1; (i <= x VLActivityOut.ul NumOfActivVL); i++)

{
printf ("VLid:%d Frame Count:%d\n",px VLActivity->ul VLIdent,px VLActivity->ul FrameCountA);
px VLActivity++;

ARINCG664 / AFDX Programmer’s Guide 155

7~y
AM

RIGHT ON TARGET

ARINCG664 / AFDX Programmer’s Guide 156

7~y
AM

RIGHT ON TARGET

void MyFdxFreeResources ()

{
TY FDX MON QUEUE CTRL IN x QueueCtrlIn;
TY FDX MON QUEUE CTRL OUT x QueueCtrlOut;

if (g_ulBoardHandle
if (FDX_ERR ==
{
printf ("FdxLogout Board Error");
}

'=0)
FdxLogout (g_ulBoardHandle))

if (g_ulPortlHandle
{

'=0)

if (FDX ERR == FdxLogout (g ulPortlHandle))
{
printf ("FdxLogout Error 1");
}
}

if (g_ulPort2Handle
{

'=0)

if (g_ulQueueId != 0)
{
X _QueueCtrlIn.ul QueueControl =

X _QueueCtrlIn.ul Queueld = g ulQueueld;

if (FDX_ERR == FdxCmdMonQueueControl (g _ulPort2Handle,

&x QueueCtrlOut))
{

printf ("FdxCmdMonQueueControl Error");

}

if (FDX ERR == FdxLogout (g ulPort2Handle))

printf ("FdxLogout Error 2");

This local function is called prior to
termination of the program within the
MyFdxGetStatus local function. This
function demonstrates:

(1) Logout of each board/port resource
using FdxLogout.

(2) Deletion of the queue(s) associated
with the chronological monitor using
FdxCmdMonQueueControl (Port 2
was setup for chronological monitor.)

FDX_MON QUEUE DELETE;

&x QueueCtrlIn,

ARINC664 / AFDX Programmer’s Guide

157

7~y
AM

RIGHT ON TARGET]

5.3 API S/W Library Function Calls vs. Program Samples

Table 5-2 provides a list of all the function calls within the API S/W Library and which sample
program contains the function call. This table is useful for searching for program examples of
how a function call is used within a program.

Table 5-2 API S/W Library Function Calls vs. Program Samples

o o o

ol 2| o 8 o laol | a

alala olal |2l ale]e

(®) ©) olalall 8 (&) o | X |

(<)) o %) o] o (7)) = c o 4 =
a|lSIZ|2IXIXIQIXIZlcs]ls]le]lg]le
2|l |l~=]0]I S|lolo] &) a
ElL (312311512 0lalc=s]l=]|<e]e
SIElZ2|C]|cs]ls|xX|x|3|>|=|8]| x|
AR EHEHEEHAEBEEREEHEERE
S|2|c|8|lclolaclc|lES|T|EIElc]|o
E| U)I U)I - ol ol ol ol E| D:I U)I U)I D| D|
X X X X X X X X X X X X X X
NS =R RSO IS NSRS =R = N=R IOl ISR RSO IS IR=R
CS|c|c| || || T|S]|T| S| T]| |

Library Administration
Functions

FdxInit
FdxQueryServerConfig °
FdxQueryResource
FdxInstallServerConfigCallback
FdxLogin

FdxLogout

FdxInstintHandler
FdxDellntHandler

FdxExit °
System Functions
FdxCmdBoardControl
FdxCmdlrigTimeControl o | o °
FdxCmdStrobeTriggerLine
FdxReadBSPVersion
FdxCmdBITETransfer
Transmitter Functions
FdxCmdTxPortlnit
FdxCmdTxModeControl
FdxCmdTxControl
FdxCmdTxStatus
FdXxCmdTxTrgLineControl
FdxCmdTxStaticRegsControl
FdxCmdTxVLControl °
FdxCmdTxQueueCreate ° °
FdxCmdTxQueueStatus

ARINC664 / AFDX Programmer’s Guide 159

2

RIGHT ON TARGET]

p
pp
pp

pp
pp
pp
ptFunc.cpp

ple.cpp
afdx GenRX CCSE.c

afdx_SystemFunc.cpp

pleUtils.cpp

gInOut.cpp
playFunc.cpp
pRx.cpp
pTx.cpp

afdx SimulationRX.c

afdx SimulationTX.c

afdx_Interru

afdx Ud
afdx Ud

afdx GenTX Ext.c
afdx Re

afdx MainSam
afdx GenericRX.c
afdx GenericTX.c

afdx Sam
afdx Lo

FdxCmdTxQueueWrite
FdxCmdTxQueueUpdate
FdxCmdTxCreateVL
FdxCmdTxCreateHiResVL
FdxCmdTxUDPCreatePort ° °
FdxCmdTxUDPChgSrcPort
FdxCmdTxUDPDestroyPort
FdxCmdTxUDPWrite
FdxCmdTxUDPBlockWrite
FdxCmdTxSAPCreatePort
FAdXxCmdTxSAPWrite
FdxCmdTxSAPBlockWrite
FdxCmdTxUDPGetStatus
FdxCmdTxUDPControl
FdxCmdTxVLWrite
FdxCmdTxVLWriteEx
Receiver Functions
FdxCmdRxPortInit
FdxCmdRxModeControl
FdxCmdRxControl
FdxCmdRxStatus
FdxCmdRxGlobalStatistics
FdxCmdRxVLControl
FdxCmdRxVLControlEx
FdxCmdRxVLGetActivity °
FdxCmdRxTrgLineControl
FdxCmdRxUDPCreatePort ° ° °
FdxCmdRxUDPChgDestPort
FdxCmdRxUDPDestroyPort ° ° °
FdxCmdRxUDPRead
FdxCmdRxUDPBIlockRead ° °
FdxCmdRxUDPControl
FdxCmdRxSAPCreatePort °
FdxCmdRxSAPWrite
FdxCmdRxSAPBlockWrite
FdxCmdRXUDPGetStatus ° °
FdxCmdMonCaptureControl ° °
FdxCmdMonTCBSetup
FdxCmdMonTrgWordIni

ARINC664 / AFDX Programmer’s Guide 160

2

RIGHT ON TARGET]

p
pp
pp

pp
ptFunc.cpp

pp
pp

ple.cpp
afdx GenRX CCSE.c

pleUtils.cpp

playFunc.cpp

ginOut.cpp
pRx.cpp
pTx.cpp

afdx_ud

afdx SimulationRX.c

afdx MainSam
afdx_SystemFunc.cpp
afdx _Sam

afdx Lo

afdx GenericRX.c
afdx GenericTX.c
afdx_GenTX_Ext.c
afdx Interru

afdx Re

afdx SimulationTX.c
afdx Ud

FdxCmdMonTrglindexWordIni
FdxCmdMonTrglindexWordIniVL
FdxCmdMonGetStatus °
FdxCmdMonQueueControl
FdxCmdMonQueueRead
FdxCmdMonQueueSeek
FdxCmdMonQueueTell
FdxCmdMonQueueStatus ° °
Target Indep Admin Function
FdxCmdFreeMemory o | o °
FdxFwlrig2Structlrig ° ° °
FdxStructlrig2Fwlrig
FdxAddlIrigStructlrig ° °
FdxSublrigStructlrig °

FdxTranslateErrorWord
FdxInitTxFrameHeader

ARINC664 / AFDX Programmer’s Guide 161

7~y
AM

RIGHT ON TARGET

THIS PAGE IS INTENTIONALLY LEFT BLANK

ARINCG664 / AFDX Programmer’s Guide 162

6 NOTES

6.1 Acronyms and Abbreviations

P

RIGHT ON TARGET]

sec microseconds

AFDX Avionic Full Duplex Switched Ethernet
API Application Programming Interface
ARINC Aeronautical Radio, Incorporated
ARM Advanced RISC Machine

ASCII American Standard Code for Information Exchange
ASP Application Support Processor

BAG Bandwidth Allocation Gap

BIP Bus Interface Unit Processor

BIT Built IN Test

BIU Bus Interface Unit

BSP Board Support Package

DCT Dynamic Counter Table

E/S End System

FCS Frame Check Sequence

FIFO First in - First out

FS Frame Size

GTM Generic Transmit Mode

GTU Gap Time Unit

1/0 Input / Output

IC Integrity Checking

ID Identifier

IFG Inter-frame Gap

IP Internet Protocol

IPP process invalid frames

IRIG B Inter Range Instrumentation Group, Time Code Format Type B
LCA Xilinx Logic Cell Array (Field Programmable Logic)
LSB Least Significant Byte

MAC Medium Access Controller

Mbps Mega bits per second

MCFL Maximum Consecutive Frames Lost
MSB Most Significant Byte

ns Nanoseconds

OIN Open Information Network

0S Operating System

OSl Open System Interconnect

PBI Physical Bus Interface

ARINCG664 / AFDX Programmer’s Guide

163

2

RIGHT ON TARGET]

PC Personal Computer.

PCI Peripheral Component Interconnect
PGWT Packet group wait time

PMC PCI Mezzanine Card

RAM Random Access Memory

RISC Reduced Instruction Set Computer.
RM Redundancy Management

RMA Redundancy Management Algorithm
RP(M) Replay Mode

S/Q Sampling & Queuing

SAP Service Access Point

SCB System Control Block

SFD Start Frame Delimiter

SN Sequence Number

STM Simulator Transmit Mode

TAP Test Access Point

TBD To be defined

TCB Monitor Trigger Control Block
TFTP Trivial File Transfer Protocol

TS Traffic Shaping

UDP User Datagram Protocol

VL Virtual Link

VME Versatile Bus Modular European (computer bus)

ARINCG664 / AFDX Programmer’s Guide

164

7~y
AM

RIGHT ON TARGET]

6.2 Definition of Terms

address quintuplet

the address of an AFDX Comm port which consists of UDP
Source/Destination, IP Source/Destination, and MAC Destination
address (VL)

Bandwidth The time difference between the start of one frame and the beginning of

Allocation Gap the next frame transmitted on the port.

Big Endian a system of memory addressing in which numbers that occupy more than
one byte in memory are stored "big end first" with the uppermost 8 bits at
the lowest address.

Channel Two physical AFDX ports

Driver Command

command used by the AIM target s/w to control the FDX device

FLASH

page oriented electrical erasable and programmable memory

function

a self-contained block of code with a specific purpose that returns a
single value.

Interframe Gap

Gap between the end of the preceding frame and the current frame.

interrupt a signal from a device attached to a computer or from a program within
the computer that causes the main program that operates the computer
(the operating system) to stop and figure out what to do next

Jitter The difference between the minimum and maximum time from when a
source node sends a message to when the sink node receives the
message. Jitter is generally a function of the network design and
multiplexing multiple VVLs on one port.

Little Endian a system of memory addressing in which numbers that occupy more than
one byte in memory are stored "little end first" with the lowest 8 bits at
the lowest address.

multicast Multicast is communication between a single sender and multiple
receivers on a network.

Packet Group Wait | The time from the transmission start point of the last frame to the start

Time point of the current frame with a resolution of 1us.

Port One physical AFDX Port

Strobe a strobe is a signal that is generated based on the conditions defined in
the API

Target Refers to the software/communication active on the target device

unicast Unicast is communication between a single sender and a single receiver

over a network.

ARINCG664 / AFDX Programmer’s Guide 165

http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212986,00.html

THIS PAGE IS INTENTIONALLY LEFT BLANK

2

RIGHT ON TARGET]

ARINCG664 / AFDX Programmer’s Guide

166

7~y
AM

RIGHT ON TARGET]

7 API S/W LIBRARY INDEX

bandwidth allocation gap (BAG) 134
FdxAddlrigStructlrig............. 37, 49, 50, 165
FdxCmdBITETransfer 37,48, 163

FdxCmdBoardControl...... 37, 43, 46, 48, 61,
132, 148, 163

FdxCmdFreeMemory .37, 45, 129, 131, 146,
147, 165

FdxCmdlIrigTimeControl37, 49, 50, 132,
148, 163

FdxCmdMonCaptureControl39, 87, 101,
103, 110, 113, 154, 164

FdxCmdMonGetStatus39, 88, 117, 158, 165

FdxCmdMonQueueControl39, 47, 103, 119,
120, 154, 161, 165

FdxCmdMonQueueRead37, 39, 49, 83, 112,
117, 119, 158, 165

FdxCmdMonQueueSeekK 39, 112, 165
FdxCmdMonQueueStatus......... 39, 112, 165
FdxCmdMonQueueTell 39, 113, 165

FdxCmdMonTCBSetup39, 51, 87, 110, 111,
164
FdxCmdMonTrgindexIniVL................... 110
FdxCmdMonTrgindexWordIni 39, 108, 110,
111, 165
FdxCmdMonTrgindexWordIniVL...39, 108,
165
FdxCmdMonTrgWordlIni .39, 108, 110, 111,
164
FdxCmdRxControl .39, 85, 89, 95, 100, 112,
138, 139, 155, 156, 164
FdxCmdRxCreatePort............ccoervee. 95, 96
FdxCmdRxGlobalStatistics....39, 83, 88, 89,
106, 140, 158, 164
FdxCmdRxModeControl39, 84, 85, 89, 100,
103, 112, 136, 154, 164
FdxCmdRxPortlInit.39, 83, 84, 90, 115, 133,
149, 164

FAXCMARXSAPWIItEccvvvevvieecvieee, 164
FdxCmdRxStatus........ 39, 88, 140, 157, 164
FdxCmdRxTrgLineControl 39, 87, 164
FdxCmdRxUDPBIlockRead... 39, 95, 96, 97,
164
FdxCmdRxUDPChgDestPort........... 39, 164
FdxCmdRxUDPControl 39, 164
FdxCmdRxUDPCreatePort.... 39, 92, 93, 95,
137,138, 164
FdxCmdRxUDPDestroyPort 39, 47, 143,
164
FdxCmdRxUDPGetStatus..... 88, 97, 99, 141
FdxCmdRXUDPGetStatus................ 39, 164
FdxCmdRxUDPRead 39, 49, 95, 96, 97, 98,
164
FdxCmdRxVLControl39, 83, 88, 89, 90, 93,
103, 106, 110, 137, 164
FdxCmdRxVLControlEx....... 39, 51, 87, 90,
104, 105, 164
FdxCmdRxVLGetActivity 39, 88, 106, 141,
159, 164
FdxCmdStrobeTriggerLine..........ccccevnee. 37
FdxCmdTxControl..... 38, 58, 60, 67, 69, 71,
72,80, 138, 139, 155, 156, 163
FdxCmdTxCreateHiResVL .. 38, 62, 63, 164

FdxCmdTxCreatePort...........ooevveeeeeee. 67
FdxCmdTxCreateVVL38, 56, 62, 63, 64, 134,
164

FdxCmdTxModeControl . 38, 56, 57, 62, 72,
79, 134, 150, 163

FdxCmdTxPortlnit. 38, 56, 57, 73, 133, 149,
163

FdxCmdTxQueueCreate .. 38, 56, 72, 73, 77,
79, 150, 163

FdxCmdTxQueueStatus.. 38, 61, 78, 80, 163

FdxCmdTxQueueUpdate................... 38, 164

FdxCmdTxQueueWrite ... 38, 51, 60, 72, 73,

FdxCmdRxSAPBIlockRead 39, 98, 99 78, 80, 112, 152, 164
FdxCmdRxSAPBIlockWriteccc....... 164 FdxCmdTxSAPBIlockWrite.. 38, 58, 69, 164
FdxCmdRxSAPCreatePort....39, 93, 98, 164 FdxCmdTxSAPCreatePort ... 38, 65, 69, 164
FdxCmdRxSAPRead..................... 39, 98, 99 FdxCmdTxSAPWrite 38, 58, 69, 164
ARINCG664 / AFDX Programmer’s Guide 167

7~y
AM

RIGHT ON TARGET]

FdxCmdTxStaticRegsControl.................. 163
FdxCmdTxStaticRegsCtrl 38,74
FdxCmdTxStatus......... 38, 61, 139, 157, 163
FdxCmdTxTrgLineControl 60, 163
FAXCmdTXTrgLineCtrl ... 38

FdxCmdTxUDPBIlockWrite...38, 58, 66, 67,
164

FdxCmdTxUDPChgSrcPort........ 38,71, 164

FdxCmdTxUDPControl ...38, 58, 68, 69, 71,
164

FdxCmdTxUDPCreatePort38, 56, 58, 63,
65, 66, 67, 68, 134, 135, 164

FAXEXIt....coooieiiiiiecrceeeei 36, 47, 145
FdxFwlrig2Structlrig............ 37,49, 97, 165
FdxInit................... 36, 42, 44, 129, 146, 163
FdxInitTxFrameHeader 37, 165
FdxInstallServerConfigCallback 36
FdxInstintHandler....................... 36, 51, 163

FdxLogin......... 36, 43, 45, 57, 131, 147, 163

FdxLogout. 36, 44, 46, 47, 52, 143, 161, 163

FdXxProcessMonQUEUE...........ccceveereeereenne 37

FdxQueryResourcec....... 36, 48, 163

FdxQueryServerConfig.... 36, 42, 43, 44, 45,
129, 146, 163

FdxCmdTxUDPDestroyPort 38, 47, 68, 143, FdxReadBSPVersion.................. 37,48, 163
164 FdxStructlrig2Fwlrig................. 37, 49, 165
FdxCmdTxUDPGetStatus......38, 61, 68, 71, FdxSublrigStructlrig................... 37, 49, 165
140, 164 FdxTranslateErrorWord.................... 37, 165
FdxCmdTxUDPWrite38, 58, 66, 67, 68, frame-durationcccceeevvveiieninic e, 76
135, 164 GNetTranslateErrorWordccocu..... 37
FdxCmdTxVLControl.....38, 58, 69, 71, 163 IP133
FAXxCmdTxVLWrite.............. 38, 63, 68, 164 QueuIng POrtSccccvvveveeeceece e 133
FdXCmdTxVLWriteEx.......... 38, 63, 68, 164 Sampling Ports......ccccevvvveveiienecenn 133
FdxDelIntHandler.................. 36, 51, 52, 163 UDP ..o 133
ARINCG664 / AFDX Programmer’s Guide 168

	1 Introduction
	1.1 General
	1.2 How This Programmer's Guide is Organized
	1.3 Conventions Used
	1.3.1 General Documentation Conventions
	1.3.2 Parameter Naming Conventions

	1.4 AIM Document Family

	2 AFDX Network Overview
	2.1 AFDX Network Structure
	2.2 AFDX Protocol Stack
	2.3 AFDX Frame Format

	3 AFDX Overview
	3.1 AFDX Functional Overview
	3.1.1 AFDX Traffic Generation
	3.1.2 AFDX Receive / Monitor Operation

	3.2 AFDX Software Overview
	3.2.1 AFDX Software Architecture
	3.2.2 AFDX Board Support Package
	3.2.3 Creating a New Microsoft Visual C/C++ Application Program
	3.2.3.1 Header File Defines for New Application Programs
	3.2.3.2 Creating and Compiling Your Application Program

	4 Programming using the api library
	4.1 Library Administration and System Programming
	4.1.1 Initialization, Login, and Board Setup
	4.1.2 Getting AIM Board Status and Configuration Information
	4.1.3 Utilizing IRIG-B
	4.1.4 Interrupt Handling

	4.2 Transmitter Programming
	4.2.1 Global Transmitter Functions
	4.2.1.1 Port Initialization and Tx Mode Setup
	4.2.1.2 Transmission Control
	4.2.1.3 Trigger Input/Output Usage
	4.2.1.4 Global Transmit Status

	4.2.2 UDP Port-Oriented Simulation Mode
	4.2.2.1 Creating the Virtual Link and Sub VL
	4.2.2.2 Writing Messages to the Port
	4.2.2.3 Writing Messages to the AFDX Comm Port
	4.2.2.4 Writing Messages to the SAP Port
	4.2.2.5 Individual UDP Port Error Injection, Skew and Enable/Disable
	4.2.2.6 Individual UDP Port Status
	4.2.2.7 Changing the Source ID of a UDP Port

	4.2.3 Generic Transmit Mode
	4.2.3.1 Allocating a Transmit Queue
	4.2.3.2 Defining the Frames / Writing to the Transmit Queue
	4.2.3.3 Generic Transmit Queue Status

	4.2.4 Replay Transmit Mode
	4.2.4.1 Allocating a Transmit Queue
	4.2.4.2 Writing a Replay File to the Transmit Queue
	4.2.4.3 Replay Transmit Queue Status

	4.3 Receiver Programming
	4.3.1 Global Receiver Functions
	4.3.1.1 Port Initialization and Rx Mode Setup
	4.3.1.2 Reception Control
	4.3.1.3 Trigger Input/Output Usage
	4.3.1.4 Global Receiver Status

	4.3.2 VL-Oriented Receive Mode
	4.3.2.1 Defining the Virtual Link and UDP Port to be Monitored/Captured
	4.3.2.2 Reading Messages from the Port
	4.3.2.3 Reading Messages from the AFDX Comm Port
	4.3.2.4 Reading Messages from the SAP Port
	4.3.2.5 Individual UDP Port Status

	4.3.3 Chronological Monitor Receive Mode
	4.3.3.1 Defining the Capture Mode
	4.3.3.2 Allocating the Monitor Queue
	4.3.3.3 Additional VL Filter Capability
	4.3.3.4 Creating Trigger Conditions
	4.3.3.5 Reading the Captured Data

	5 Program SampleS
	5.1 Program Samples Overview
	5.2 Program Sample Code
	5.2.1 UDP-Port Oriented Transmission/VL-Oriented Monitor Storage
	5.2.2 Generic Transmission/Chronological Monitor Reception Sample

	5.3 API S/W Library Function Calls vs. Program Samples

	6 NOTES
	6.1 Acronyms and Abbreviations
	6.2 Definition of Terms

	7 Api S/W Library Index

