
MIL-STD-1553

C/C++ based Application
Programming Interface

Programmer’s
Guide

Version 24.18.0
March, 2023

www.aim-online.com

www.aim-online.com

MIL-STD-1553

C/C++ based Application
Programming Interface

Programmer’s
Guide

Version 24.18.0
March, 2023

AIM NO. 60-11900-37-24.18.0

MIL-STD-1553 - V24.18.0 I

AIM – Gesellschaft für angewandte Informatik und Mikroelektronik mbH

AIM GmbH
Sasbacher Str. 2
D-79111 Freiburg / Germany
Phone +49 (0)761 4 52 29-0
Fax +49 (0)761 4 52 29-33
sales@aim-online.com

AIM GmbH – Munich Sales Office
Terofalstr. 23a
D-80689 München / Germany
Phone +49 (0)89 70 92 92-92
Fax +49 (0)89 70 92 92-94
salesgermany@aim-online.com

AIM UK Office
Cressex Enterprise Centre, Lincoln Rd.
High Wycombe, Bucks. HP12 3RB / UK
Phone +44 (0)1494-446844
Fax +44 (0)1494-449324
salesuk@aim-online.com

AIM USA LLC
Seven Neshaminy Interplex
Suite 211 Trevose, PA 19053
Phone 267-982-2600
Fax 215-645-1580
sales@aim-online.us

© AIM GmbH 2023

Notice: The information that is provided in this document is believed to be accurate. No responsibility
is assumed by AIM GmbH for its use. No license or rights are granted by implication in connection
therewith. Specifications are subject to change without notice.

II MIL-STD-1553 - V24.18.0

mailto:sales@aim-online.com
mailto:salesgermany@aim-online.com
mailto:salesuk@aim-online.com
mailto:sales@aim-online.us

TABLE OF CONTENTS

TABLE OF CONTENTS

1 Introduction .. 1
1.1 General ... 1
1.2 How this Programmer’s Guide is organized .. 1
1.3 AIM Document Family... 3

2 MIL-STD-1553 Specification Overview ... 4

3 AIM 1553 Bus Interface Module Overview ... 8
3.1 Hardware Architecture .. 10
3.2 Software Architecture.. 11
3.3 API S/W Library Structure/Content ... 12
3.4 Application Program Structure Overview .. 13
3.5 MIL-STD-1553 Transfers and Frame Structure Overview ... 15

4 Library Administration And System Programming... 18
4.1 Initialization ... 18
4.2 Termination ... 20
4.3 Getting Information ... 20
4.4 Symmetric Multiprocessing ... 20
4.5 Defining MIL-STD-1553 Protocol .. 22
4.6 Defining External Connectivity .. 23
4.7 Configuring Response Timeout .. 24
4.8 Utilizing IRIG-B ... 25
4.9 Interrupt Handling ... 25
4.10 Debugging... 27
4.11 GPIO Programming... 28

5 Simulation Buffer Programming ... 29
5.1 1553 Buffer Header Ids and Buffer Ids.. 29
5.2 1553 Buffer Data Consistency .. 32

6 Bus Controller Programming .. 34
6.1 Initializing the BC .. 34
6.2 Defining 1553 Transfers .. 36
6.3 BC Transmit and Receive Message Data Word Generation/Processing 39
6.4 BC Transfers with Error Injection... 43
6.5 Defining Minor/Major Frames Content & Timing ... 44
6.6 Starting the Bus Controller.. 49
6.7 Acyclic 1553 Transfers .. 53
6.8 BC Interrupt Programming .. 54
6.9 Status Word Exception Handling .. 57

7 Remote Terminal Programming .. 60
7.1 Initializing the RT... 60
7.2 Defining RT Subaddress/Mode Code for Communication with the BC............................. 61
7.3 RT Transfers Error Injection .. 68
7.4 RT Interrupt Programming .. 70

8 Bus Monitor Programming .. 72

MIL-STD-1553 - V24.18.0 III

TABLE OF CONTENTS

8.1 Additional Bus Monitor Trigger .. 72
8.2 Additional Bus Monitor Filter ... 82
8.3 Recording Using Queuing... 83
8.4 Recording Using Data Queue Recording.. 83
8.5 1553 Data Queue Recording .. 84
8.6 Format of Data Stored in the 1553 Monitor Buffer .. 84

9 Replay Programming ... 87

10 Troubleshooting ... 89
10.1 Checking Return Values.. 89
10.2 Using Counters ... 89
10.3 Monitoring the Bus Traffic ... 89
10.4 Contacting Support ... 89

11 Migrating from API 22 to API 24 .. 90
11.1 Library Interface .. 90
11.2 Incompatible Function Prototypes... 90
11.3 Obsolete Function Prototypes... 91
11.4 Removed Memory Functions With Replacements .. 91
11.5 Removed Functions Without Replacements ... 92

List of Abbreviations.. I

List of Figures... II

IV MIL-STD-1553 - V24.18.0

INTRODUCTION

1 Introduction

1.1 General

Welcome to the Programmer’s Guide for MIL-STD-1553 for AIM devices. This programmer’s guide,
in conjunction with the associated Reference Manual, is intended to provide the software (s/w) pro-
grammer with the information needed to develop a host computer application interface to AIM devices.
The Programmer’s Guide provides the application developer with high-level s/w development informa-
tion including high level system design information, user application system design concepts, function
call guidelines and sample programs for the AIM bus interface card. The Software Library Reference
Manual provides the user with detailed programming information including s/w library function call and
header file details and specific troubleshooting information. The BSP Getting Started manual contains
information about the board support package (BSP) contents.

Note:
Please note that not all functionality explained in this document is available for all AIM modules. Please
see the Appendix B of the Reference Manual for details on which limitations apply to different board
variants

1.2 How this Programmer’s Guide is organized

The first sections describe the information needed to start with programming the AIM device and
contain background information:

Introduction - Provides an introduction to the
contents of the programmer’s guide documen-
tation conventions and applicable documents.

MIL-STD-1553 Overview - Provides a high
level overview of the MIL STD 1553 communi-
cation protocol including Command, Data and

Status word formats and message sequencing.

AIM1553 Module Overview - Provides a high level
overview of the hardware and software architecture.

Included in the software section is a description of an
application program structure overview and basics about
1553 message transfers and minor/major framedefinition.

1

2

3

MIL-STD-1553 - V24.18.0 1

INTRODUCTION

The middle sections describe how the AIM library is interfaced in order to program an application:

Library Administration And System Program-
ming - Provides the programming guidelines
for the administration and system functions.

Simulation Buffer Programming - Pro-
vides details on how data buffers can
be assigned to BC and RT functions.

Bus Controller Programming - Provides de-
tails on how to send transfers on the bus.

Remote Terminal Programming - Provides details on
how to implement different types of Remote Terminals.

Bus Monitor Programming - Provides details
on how to implement a Bus Monitor application.

Replay Programming - Provides details
on how to implement a physical bus replay.

4

5

6

7

8

9

2 MIL-STD-1553 - V24.18.0

INTRODUCTION

The last sections wrap up the document by providing troubleshooting information and a migra-
tion guide

Troubleshooting - Provides information on
how to spot causes for errors in the application.

Migrating from API 22 to API 24 - Provides de-
tails on how to port an applicaton written for

BSP 10.x and BSP 11.x to BSP 12.x and above.

10

11

1.3 AIM Document Family

AIM has developed several documents that may be used to aid the developer with other aspects involving
the use of the 1553 bus interface card. These documents and a summary of their contents are listed
below:

• MIL-STD-1553 Reference Manual - provides the 1553 application developer with detailed pro-
gramming information including library function call and specific troubleshooting information. This
guide is to be used in conjunction with this Programmer’s Guide.

• MIL-STD-1553 Tutorial - provides a general overview of MIL-STD-1553 including MIL-STD-1553
history and a complete annotated version of the MIL-STD-1553B specification and an interpreta-
tion of the specification contents.

• Getting Started Manual - assists the first time users of the AIM 1553 boards with software in-
stallation, hardware setup and starting a sample project. The different BSPs for the supported
Operating Systems contain dedicated Getting Started Manuals for each OS.

• Hardware Manual - assists users with installation and initial setup of the device in the system.
Each hardware has its dedicated Hardware Manual.

• Users Manual - the AIM ANET device family has User Manuals which is a combination of the
Hardware Manual and Getting Started Manual.

MIL-STD-1553 - V24.18.0 3

MIL-STD-1553 SPECIFICATION OVERVIEW

2 MIL-STD-1553 Specification Overview

For any 1553 application, the user will define the requirements for the terminal under design.

Terminal device types include:

• Bus Controller

– Manages all message traffic on the bus in a Command-Response fashion

– Only one bus controller is allowed, provisions for a backup BC to take control if needed, but
only one at a time

– Executes scheduled messages on the bus in a pre-determined priority scheme, utilizing frame
and sub-frame time scheduling

• Remote Terminal

– Up to 32 RT devices, each with a unique individual address

– Respond only when requested by the BC

– Responds back to every BC command

• Bus Monitor

– No address, no transmission on the bus

Figure 2.0.0-I shows an example of a bus configuration.

Figure 2.0.0-I: Example Bus Configuration

4 MIL-STD-1553 - V24.18.0

MIL-STD-1553 SPECIFICATION OVERVIEW

The user’s application will likely be required to adhere to an interface control document which will define
the data interfaces between the RT and BC. To insure common terminology and understanding of the
API programming design information contained in the following sections, we will quickly review the basic
concepts of the MIL-STD-1553 message content and transfer protocol. Message traffic on the 1553 bus
consists of command, data, and status words with the format shown in Figure 2.0.0-II.

Figure 2.0.0-II: Word Formats

MIL-STD-1553 defines 10 types of transfers as shown in Figure 2.0.0-III and 2.0.0-IV. Each transfer is
composed of control words (command and status) and data words and is always initiated by the BC.
Normal communications start with a command from the BC, transmitted to a selected RT address. The
RT receives or transmits data - depending on the BC command - and transmits a status word response.
The BC can also initiate an information transfer between two RTs by issuing one a transmit command
and the other a receive command.

Mode commands are used in terminal control and systems checks. Mode commands may or may not
involve the transfer of a data word.

Broadcast commands are commands sent to multiple RTs at once. Although restricted under Notice
1, Notice 2 allows broadcast command transmission but only a limited set. The RT is responsible for
distinguishing between broadcast and non-broadcast command messages.

Data transmission on the bus between terminal devices is performed in a deterministic manner with no
more or less than a 4-12 µsec response intermessage gap allowed.

MIL-STD-1553 - V24.18.0 5

MIL-STD-1553 SPECIFICATION OVERVIEW

Figure 2.0.0-III: Information Transfer Formats

6 MIL-STD-1553 - V24.18.0

MIL-STD-1553 SPECIFICATION OVERVIEW

Figure 2.0.0-IV: Broadcast Information Transfer Formats

MIL-STD-1553 - V24.18.0 7

AIM 1553 BUS INTERFACE MODULE OVERVIEW

3 AIM 1553 Bus Interface Module Overview

The standard AIM 1553 modules are part of a family of bus interface modules providing full function
test, simulation, monitoring and databus analyzer functions for MIL-STD-1553A/B applications. The
embedded AIM 1553 modules have a reduced function set and are optimized for embedded use cases.
Additionally AIM offers standard variants with reduced function sets. Each module might provide the
following functions on one or more dual redundant MIL-STD-1553 A/B buses.

• Bus Controller - provides real-time Bus Controller functions concurrently with Multiple RT and
Bus Monitor operation. Key features include:

– Autonomous operation including sequencing of minor/major frames

– Support for acyclic message insertion/deletion

– Programmable BC Retry without host interaction

– Full error injection down to word and bit level (AS4112 Compliant) *

– Multi-buffering for Data Consistency and Message Multiplexing

– Synchronization of BC operation to external trigger inputs

– 4 µs intermessage gaps *

• Multiple Remote Terminal - Simulates up to 32 Remote Terminals including all subaddresses.
Key features include:

– Programmable RT response time down to 4µs for each simulated RT *

– Programmable and intelligent response to mode codes

– Full error injection down to word and bit level (AS4112 Compliant) *

– Multi-buffering with real-time data buffer updates

– Programmable response time out

• Chronological Bus Monitor - Provides accurate time tagging of all bus traffic to 1 µs resolution
including response time and gap time measurements down to 0.25 µs resolution. Key features
include:

– 100% data capture on two streams at full bus rates

– Autonomous message synchronization and full error detection

– Two dynamic complex trigger sequences *

– Message filter and selective capture

– Bus activity recording independent from trigger and capture mode

• Bus Replay * - Key features include:

– Reconstruction of previously recorded MIL-STD-1553A/B databus traffic

– Recorded data selectively replayed with any or all RT responses enabled

• IRIG-B time code decoder - Key features include:

– Allows synchronization of MIL-STD-1553A/B bus traffic using one common IRIG-B time source
or the on-board Time Code Generator

8 MIL-STD-1553 - V24.18.0

AIM 1553 BUS INTERFACE MODULE OVERVIEW

Note:
* Check Appendix B of the Reference Manual for a detailed overview of functions supported for different
devices.

Figure 3.0.0-I shows a sample configuration of an AIM 1553 device with 32 RTs, a BC, BM and Replay
functionality. This visual graphic was generated by the PBA.pro software package which runs on a host
and controls an AIM 1553 bus interface. See the PBA.pro Bus Analyzer Getting Started Manual for
further information about the AIM analyzer software.

Figure 3.0.0-I: PBA.pro System Overview

Note:
The PBA.pro software packages also utilize the API S/W Library to setup and control the AIM bus
interface modules.

If you have just purchased your module, the associated Getting Started Manual provides first time users
with instructions on software installation, hardware setup and starting a sample project.

The following sections provide an overview of the hardware and software architecture, and a description
of the API S/W Library.

MIL-STD-1553 - V24.18.0 9

AIM 1553 BUS INTERFACE MODULE OVERVIEW

3.1 Hardware Architecture

The AIM 1553 bus analyzers are based upon AIM’s "Common Core" hardware architecture with different
bus interfaces. Among others the following busses and form factors are supported: PCIe, PCIe Mini
Card, XMC, PXIe, PCI, cPCI, PCIX, PXI, PMC, VME, USB and Ethernet.

The following graph shows a schematic block diagram of a dual channel 1553 card. Detailed hardware
design information can be found in the associated hardware manuals.

PCIe
ASP

Processor
Global
RAM

BIU1
Processor

BIU2
Processor

IO Logic

IO

IRIG

1553-1

1553-2

The main hardware components in AIM’s "Common Core" design illustrated above are are as follows:

• PCIe - represents the host interface. This can be any of the supported buses PCIe, PCI, USB,
VME among others

• ASP Processor - translates the API calls from the host into Firmware commands and processes
Firmware data for the Host. Some modules do not have a dedicated ASP processor and include
the TSW within the device driver.

– Run the on-board driver software (TSW or Target Software)

– Setup the Global RAM for BIU Processor operation

– Interface to the host

• Global RAM - Shared communication memory between the BIUs, the ASP and the Host Interface

• BIU Processor – each runs a real time Firmware that handles one or two dual-redundant MIL-
STD-1553 stream and controls the receive and transmit data flow.

• IO Logic – Interface between the BIU Firmware and the HW

– Receives the incoming serial data stream, detects the synchronization (sync) pattern, con-
verts 16-bit Manchester encoded serial data to parallel and receives the parity bit

– Generated command and data words on the bus using a Manchester Encoder with full error
injection capability

• IO – HW IO Signals GPIOs and Trigger lines

10 MIL-STD-1553 - V24.18.0

AIM 1553 BUS INTERFACE MODULE OVERVIEW

• IRIG – HW Irig signal lines

• 1553-1 – First HW 1553 stream including primary and secondary lanes

• 1553-2 – Second HW 1553 stream including primary and secondary lanes

3.2 Software Architecture

The AIM hardware design, as shown in the previous section, provides for the utilization of a common
application s/w library of function calls to support host application interfaces to the AIM 1553 modules.
The following graph shows the high-level software architecture of the AIM 1553 bus interface module
and it’s interface to a host computer application:

Custom
Application

PBA.pro

API Driver TSW

The main software components illustrated above are are as follows:

• Custom Application - This can be any custom application written in any of the supported lan-
guages which currently are C, C++, LabView VI, .NET or Python.

• PBA.pro - This is the AIM analyzer software which uses the same API as any other customer
written software.

• API - stands for Application Programming Interface which is the interface that needs to be pro-
grammed in order to access any AIM module. The API is documented in the Reference Manual
included and is further explained in the programming sections of this manual. Typical file names
for the API are api_mil.24.dll for Windows or libaim_mil.so for Linux.

• Driver – The driver provides access to the memory of the device and handles the physical inter-
rupts. In cases where the device does not contain an ASP Processor the driver does also execute
the on-board driver software code. Typical names for the driver are aim_mil.sys for Windows or
aim_mil.ko for Linux.

• TSW – The Target Software which is the interface between the API and the on-board Firmware.

As shown in the graph above, the API S/W Library is utilized by the User’s Application program (Cus-
tom Applicaton) to control the target module. (As an option, the application developer can utilize the
AIM PBA.pro Bus Analyzer Software Bus Monitor function to monitor bus traffic setup by the User’s
Application.) Both the PBA.pro and the User’s Application program utilize the same API S/W Library.

The API S/W Library encapsulates operating system specific handling of Host-to-Target communication
in order to support multiple platforms with one set of library functions.

MIL-STD-1553 - V24.18.0 11

AIM 1553 BUS INTERFACE MODULE OVERVIEW

The following graph shows the high-level software architecture in case of an AIM network device (e.g.
ANET1553) or if the AIM Network Server (ANS) is used:

Custom
Application

PBA.pro

API (Client) ANS API (Server) Driver TSW
Ethernet

The software components in case of an ANET1553 access as illustrated above are are as follows:

• Custom Application - Custom application as described above

• PBA.pro - The PBA.pro analyzer as described above

• API (Client) - The API as described above. In case of a network device the API is communicating
with the AIM Network Server over Ethernet instead of the device driver.

• ANS - The AIM Network Server is listening on socket 1553 for connections from the Ethernet client
API. The server forwards each received API function call to the API available on the ANET1553
side or server side.

• API (Server) - The API as described above. The same API is used by the ANS to forward the
function calls of the client.

• Driver – The device driver as described above.

• TSW – The Target Software as described above.

3.3 API S/W Library Structure/Content

The API S/W Library function calls are divided into the following subgroups:

• Library Administration/Initialization Functions - provide general library initialization, and shut-
down, interrupt handler setup, and error message handling setup. These functions will be dis-
cussed in Section 4.

• System Functions - provide general device control, response timeout setup, IRIG setup, board
configuration status and control of the generation of dynamic data words/datasets. These functions
will be discussed in Section 4.

• Calibration Functions - provide configuration of the physical bus including coupling mode, trans-
mitter amplitude output and data rate (default 1 Mbps). These functions will be discussed in Sec-
tion 4.

• Buffer Functions - provide setup and status of the RT/BC global RAM message buffer memory
area and ASP shared RAM dataset buffer area used for message transfers. These functions will
be discussed within the context of defining and executing BC and RT transfers in Sections 5, 6 and
7.

12 MIL-STD-1553 - V24.18.0

AIM 1553 BUS INTERFACE MODULE OVERVIEW

• First-in-first-out (FIFO) Functions - provide setup and status for FIFO buffers used for 1553
message transfers. These functions will be discussed within the context of defining and executing
BC and RT transfers in Sections 5, 6 and 7.

• Bus Controller Functions - provide definition of 1553 transfers within the minor frame(s) and
setup of the minor frame(s) within the major frame(s) including definition of minor frame timing.
The BC functions also provide definition BC transfer properties and real-time BC transfer control
including insertion of acyclic messages. These functions will be discussed in Section 6.

• Remote Terminal Functions - provide configuration, status and error insertion for RT transfers.
These functions will be discussed in Section 7.

• Bus Monitor Functions - provide configuration of the Bus Monitor for Chronological recording of
all or filtered data streams. These functions will be discussed in Section 8.

• Replay Functions - provide configuration of the Replay process to replay pre-recorded Bus Mon-
itor data entries in entirety or filtered by specified RTs. These functions will be discussed in Sec-
tion 9.

3.4 Application Program Structure Overview

The API function calls can be used to simulate a BC and/or RT on the bus as well as monitor bus activity
and replay recorded data. The graph below shows the structure of a basic application program and the
API function categories associated with each major part of the program.

Decide if you need to simulate a BC, and/or one or more RT(s). Determine if you want to program the
BM to capture/replay data. For BC simulations, know the BC-to-RT, RT-to-BC, and RT-to-RT transfers
that must be initiated. Determine how the data words will be generated and whether errors are to be
injected into the transfer. Know how all simulated transfers are to be included in the minor/major frame
structure.

For RT simulations, know which RT’s and RT SA’s need to be simulated, the response time and the
status to be returned, or whether the RT is to be configured for mailbox monitoring (no response on
the bus). For RT-to-RT and RT-to-BC transfers, determine how the data words will be generated and
whether errors are to be injected into the transfer. Know whether the RT is required to respond to Mode
Codes and which mode codes are required.

If you want the databus to be monitored, know how you want the monitor to be started (triggered) i.e
trigger on error, external trigger, first word received... Determine if you want all or specific RT SAs/Mod-
ecodes to be monitored.

Determine if you need an interrupt handler to handle BC or RT interrupt signals. BC and RT function
calls can be setup to produce interrupts based on certain conditions.

Follow the basic structure below utilizing the function call groups indicated to create your application
program.

MIL-STD-1553 - V24.18.0 13

AIM 1553 BUS INTERFACE MODULE OVERVIEW

Initialization - Library Administration Functions
• Initialize API Library
• Open Stream
• Optional interrupt handler setup

Board Setup - System Functions
• Initialize device
• Define MILBus protocol(A or B) and Response timeout
• Define MILBus coupling mode
• IRIG time setup

BC Simulation Setup - BC Functions, Buffer Functions, FIFO Functions
• Initialize the BC retry mechanism, Service Request Control, define whether all transfers use the

same/different bus
• Define the properties of each BC to RT, RT to RT, RT to BC transfer to be simulated including

data word count, reponse control, retry control, status word handling, error/gap injection, Status
word handling and interrupt generation.

• Assign Header ID and and Message Buffers IDs to each transfer.
• Insert initial data words into the transfer message buffers.
• Determine framing mode (Standard or BC Instruction Table mode) and configure minor/major

frames or BC instruction tables accordingly.

RT Simulation Setup - RT Functions, Buffer Functions, FIFO Functions
• Initialize the RT defining the RT’s address, whether RT is simulated or configured for Mailbox

monitoring, response time, and the Status word the RT will respond with.
• Assign Header ID and Message Buffers IDs to each sub address or mode code. Enable inter-

rupt generation if required.
• Enable the RT’s SA for transmit, receive or modecode transfers, and specific Status word re-

sponse value.
• For RT to RT or RT to BC transfers, insert initial data words into the message buffers.

Bus Monitor Setup - BM Functions
• Initialize monitor
• Configure capture mode for Recording mode
• If required, define the trigger(s) for start of capture/arm the trigger and whether the trigger

creates an interrupt.
• If required, define filter captured data based on transfer ID.

1

2

3

4

5

14 MIL-STD-1553 - V24.18.0

AIM 1553 BUS INTERFACE MODULE OVERVIEW

Start Bus Monitor - BM Functions
• Start receiving and/or monitoring the MILBus data

Start RTs/BC - RT Functions, BC Functions
• Start all RTs
• Start the BC

Retrieve Status/Data - System Functions, BC Func-
tions, RT Functions, BM Functions, Replay Functions

• BC Status
• RT Status
• Retrieve Captured data

Stop RT/BC/BM Shutdown - Library Administration
Functions, BC Functions, RT Functions, BM Functions

• Stop BC/RT/BM
• Uninstall any interrupt handlers
• Close each resource
• Exit API library

6

7

8

9

3.5 MIL-STD-1553 Transfers and Frame Structure Overview

Programming the AIM 1553 bus interface module to simulate a BC and/or RT revolves around the con-
cept of defining transfers. Additionally, for the BC the transfers must then be scheduled into minor and
major frames. The following two sections will provide an overview of these two concepts.

3.5.1 About MIL-STD-1553 Transfers

In order to simulate the BC, the user must define BC transfers. A BC transfer is assigned a Transfer
ID and Header ID (usually the same number) for the BC side of the BC-to-RT, RT-to-BC or RT-to-RT
transfers to simulate on the 1553 bus. The BC Header ID points to memory locations containing Status
and Event information for a specific BC transfer and the Message buffer(s) which contain the BC trans-
mit/receive Data words within the 1553 transfer. In order to simulate the RT SA using 1553 protocol
standards the user must assign a Header ID which is associated with all the RT SA properties, status
and transmit/receive message buffers for the RT side of the BC-to-RT, RT-to-BC or RT-to-RT transfers.
For BC and RT simulations, the maximum number of Transfers/Header IDs that can be defined will vary
based on the amount of Global RAM available on your board and the current memory layout.

MIL-STD-1553 - V24.18.0 15

AIM 1553 BUS INTERFACE MODULE OVERVIEW

To obtain the maximum number of available transfer ids use the function ApiCmdSysGetMemPartition.
The output structure TY_API_GET_MEM_INFO contains all the information about the memory layout.
The following table contains the parameter names for the struct members of TY_API_GET_MEM_INFO
for Transfer Ids, Header Ids and Buffer Ids.

Struct member ID type
x_BiuCnt[n*].ul_BcXferDesc BC Transfer Id count
x_BiuCnt[n*].ul_BcBhArea BC Buffer Header Id count
x_BiuCnt[n*].ul_RtBhArea RT Buffer Header Id count
x_Sim[n*].ul_BufSize RT/BC Buffer Id count

Note:
* n is the BIU that should be checked

Note:
Our examples will utilize the maximum value of 511 Transfer/Header IDs which are available on all our
boards.

A BC transfer defines the characteristics/properties (including error injection) for the BC side of any one
of the MIL-STD-1553 Command/Data/Status.

All BC and RT message transfers utilize a common message buffer pool located in Global RAM. All
BC and RT message transfers require the user to assign at least one Global RAM message buffer. For
instance, for an application with a simulated BC and simulated RT, for one BC-to-RT transfer, at least one
message buffer will be assigned to the BC transmit message and at least one message buffer assigned
for the RT receive message. If there are no MIL-STD-1553 Data words within the 1553 transfer, a
message buffer will still need to be assigned. See table above on how to obtain the maximum available
buffer ids.

See Section 5 for more details on Buffer Header Ids and Buffer Ids.

3.5.2 Major/Minor Frame Scheduling Design Concepts

Once the developer has determined the configuration and RT/BC interface requirements of the 1553
application, the scheduling of message transfers on the bus is required. The API S/W supports 128
transfers per minor frame and 64 minor frames per major frame as shown in Figure 3.5.2-I. In this
diagram, a transfer consists any of the 1553 transfers on the 1553 bus. Each transfer depicted in this
diagram is defined by the API S/W Library as one of the following types (all initiated by the BC):

1. BC-to-RT

2. RT-to-BC

3. RT-to-RT.

Note:
If the function ApiCmdBCMFrameDefEx is used the application can set up 512 minor frames per major
frame.

16 MIL-STD-1553 - V24.18.0

AIM 1553 BUS INTERFACE MODULE OVERVIEW

Figure 3.5.2-I: Major/Minor Frame Scheduling Diagram

MIL-STD-1553 - V24.18.0 17

LIBRARY ADMINISTRATION AND SYSTEM PROGRAMMING

4 Library Administration And System Programming

An AIM board has some features that affect the whole board. For example the IRIG-B time encoder/de-
coder, the trigger lines or the discrete channels. But depending on its assembly the board has also up
to 8 streams that may either be configured as RT, BC, BM or a combination. Some functions to show
more information about a specific board and its channels are listed in Section 4.3

This section will discuss some of the typical scenarios a programmer would encounter that would require
the use of the library administration, system, and calibration calls. These scenarios include:

• Initializing your application and application interface to the AIM board

– for AIM boards located on your computer

– for AIM boards located on a remote server

• Getting AIM Board Status and Configuration Information

• Defining MILbus protocol

• Defining External Connectivity

• Configuring response timeout

• Utilizing IRIG-B

• Interrupt handling

• Discrete I/O programming

• Debugging

4.1 Initialization and Board Setup

The API S/W Library is capable of controlling AIM boards which are located on your computer or re-
motely on a network server that has the AIM Network Server (ANS) software installed. Initialization and
shutdown commands required for your application depend on this configuration. This section will discuss
both configurations and the function calls required to support each configuration.

Note:
The ANET1553 device works like an ANS Server with a single board inserted. Please refer to the User’s
Manual for details

The basic Library Administrative and System functions supporting initialization and shutdown include
the following functions which should be issued in the order shown:

• ApiInit - first initialize the API S/W Library interface and find out how many AIM boards/modules
are on the local PC

• ApiConnectToServer - returns the count of boards (boardCount) on the remote computer and
status for success/failure of the execution of the function.

Note: do not call ApiInit after ApiConnectToServer

18 MIL-STD-1553 - V24.18.0

LIBRARY ADMINISTRATION AND SYSTEM PROGRAMMING

• board mapping functions (only VxWorks) - the commands AiPciScan, AiVmeExamineSlot and/or
AiVmeMapModule are used to map a board to the PCI or VME bus. The output of the command
AiVmeMapModule is the board ID assigned to this board and shall be used as input parameter of
ApiOpen. If interrupts are used, the function AiVmeInitGenericInterrupt also has to be called at
this point.

• ApiOpenEx returns a handle which will be used to reference a stream on an AIM board for the rest
of the program. If the AIM boards are located on a remote computer, the parameter ac_SrvName
has to be set to the ServerName or Internet Protocol (IP) address. If addressing boards on the
local machine, the parameter shall be set to "local".

In VxWorks the input parameter device_id of ApiOpenEx shall be set to the value returned by
function AiVmeMapModule.

• ApiCmdReset resets a stream to initial state. After power up the device is already in a reset state
and this function call is not necessary for proper board operation. However, for cases where a
previous application has been running and the state of the board has been altered it is common
practice to call the ApiCmdReset function during the start of a new application. Please note that
even though the function resets a dedicated stream it does also reset the shared simulation buffer
area. This does affect data transmitted and received by all streams on the board. Use the Reset
Control mode API_RESET_WITHOUT_SIMBUF to avoid this.

ApiCmdReset will return the Bus Monitor and Simulator buffer memory size/address information
at the address specified in the third parameter.

Parameters (of many) initialized by ApiCmdReset include but is not limited to:

– MILBus protocol which is set to a default value of Type B (1553B).

– Response Timeout is set to a default value of 14µs.

Upon successful execution of these functions, the AIM boards are ready to be commanded with all other
API S/W Library function calls.

TY_API_OPEN xApiOpen ;

wBoardCountLocal = Api In i t () ; / * Local board access * /

i f (useServer)
{

/ * Remote board access * /
r e t V a l = ApiConnectToServer (strServerName , &wBoardCountRemote) ;

}

xApiOpen . ul_Module = 0;
xApiOpen . ul_Stream = API_STREAM_1 ;
s p r i n t f (xApiOpen . ac_SrvName , xConf ig . acServer) ;

r e t V a l = ApiOpenEx(&xApiOpen , &ulModHandle) ;

/ * At t h i s po in t the opened stream can be used * /

MIL-STD-1553 - V24.18.0 19

LIBRARY ADMINISTRATION AND SYSTEM PROGRAMMING

4.2 Board cleanup and program termination

• ApiClose - The ApiClose function terminates the communication to the AIM board(s) after all
streams have been closed. Subsequent calls of driver-related functions after issuing an ApiClose
function call might result in an error code and should be avoided. To re-establish connection to the
AIM board, the ApiOpenEx function must be called.

• ApiDisconnectFromServer - If a connection to a remote PC or ANET device has been estab-
lished, the command ApiDisconnectFromServer function should be issued to disconnect the net-
work connection.

• ApiExit - The ApiExit stops the PNP thread and deletes allocated data for a safe unload of the
library.

r e t V a l = ApiClose (ulModHandle) ;

i f (useServer)
ApiDisconnectFromServer (strServerName) ;

ApiExit () ;

4.3 Getting Information about the AIM Board and the Configuration

Once you have initialized and opened the connection to the AIM board as described in the previous
section, you can obtain the status of the configuration of the board and the software versions contained
on your AIM board. The functions that provide this status are as follows:

• ApiCmdBite - Performs a self-test of the AIM board.

• ApiGetBoardName - Shows the name of the board.

• ApiReadAllVersions - Reads the versions of all components.

• ApiCmdSysGetBoardInfo - Retrieves basic information about the board.

4.4 Symmetric Multiprocessing

This section describes how tasks can be executed in parallel and what limitations the API has in terms of
parallel execution. We use the term Symmetric Multiprocessing in this document because all the tasks
and threads use a shared I/O path in the system driver to access the board.

For this document it is assumed that the concurrent tasks or threads access unique parts of the module.
E.g. two threads could be used to access stream 1 and 2 each or BC and RT. It is not recommended
to implement access to the same component on a stream. E.g. two threads control RT receive and RT
transmit.

20 MIL-STD-1553 - V24.18.0

LIBRARY ADMINISTRATION AND SYSTEM PROGRAMMING

Different operating systems have different naming schemes on addressing task with shared memory vs.
tasks with independent memory. In this document we use the term task to address a program that does
not have a shared memory. This is the case for all our operating systems when one starts the same
executable twice. In this case, where the memory is not shared, each task has its own library instance.
We use the term thread for cases where the memory is shared. In this case all threads use the same
library instance and therefor access the same global variables in the library.

To explain the technical differences of parallel code execution we use the terms multi-threading and
multi-tasking.

4.4.1 Multi-threading

We use multi-threading in this document to explain cases where a single task spawns multiple threads
with a common memory segment. In this case the threads share the library instance and its global
variables in memory. Threads on Windows are typically created with the function CreateThread. Threads
on Linux are typically created with pthread_create.

The AIM library is thread safe with a few exceptions that are listed below.

The recommended API function call order is as follows:

1. Call ApiInit

2. Call ApiOpenEx for all streams that need to be accessed

3. Call ApiCmdReset for all streams that need to be accessed

4. Spawn the threads and pass the module handle assigned to the thread.

5. Each thread is now calling the API functions in parallel

6. Join the threads in the main application

7. Call ApiClose for each open handle

8. Call ApiExit

The API contains some functions that are not thread save. This functions can only be called in
the main application before and after the thread execution.

ApiInit This function initializes the list of boards and is called only once at the beginning of each appli-
cation.

ApiExit This function removes the list of boards and cleans up the memory. It is called only once at the
end of each application.

ApiConnectToServer This function initializes the list of boards on a remote PC or ANET device and is
called only once at the beginning of applications that require remote access.

ApiDisconnectFromServer This function removes the list of boards on a remote PC or ANET device
and cleans up the memory. It is called only once at the end of applications that require remote
access.

ApiSetDllDbgLevel This function is not thread safe and only needs to be called if necessary.

MIL-STD-1553 - V24.18.0 21

LIBRARY ADMINISTRATION AND SYSTEM PROGRAMMING

4.4.2 Multi-tasking

We use the term multi-tasking in this document to explain cases where multiple task or programs are
started which do not share a common memory segment by default. In this case the tasks do not share
a common library instance and do not share the libraries global variables. Tasks on Windows and Linux
are typically created by executing separate applications or by executing the same application several
times.

The recommended API function call order is as follows:

1. Call ApiInit

2. Call ApiOpenEx for all streams that need to be accessed

3. Call ApiCmdReset rc=API_RESET_WITHOUT_SIMBUF for all streams

4. Each task is now calling the API functions in parallel

5. Call ApiClose for each open handle

6. Call ApiExit

4.4.3 Shared resources handling

We recommend to handle the shared resources of the board by a single thread or task. Accessing
shared resources on the board can have an impact on all streams and all threads.

ApiCmdReset This function can be called for each stream individually. However, by default this func-
tion call resets all buffer data to zero. If parallel access to the other streams is expected use
rc=API_RESET_WITHOUT_SIMBUF to prevent the function from initializing the shared simulation
buffer.

ApiCmdBufDef Reading and writing shared buffer data from different threads is possible but not recom-
mended. We recommend to partition the available buffers into segments and use each segment in
a dedicated thread. In case buffer sharing is required it is possible to read and write buffers from
different threads.

ApiCmdSetIrigTime The board has only one Irig time. Setting the time has an effect on all streams
and should be used with care.

ApiCmdSetIrigStatus The board has only one Irig circuit. Setting the time to internal or external has
an effect on all streams and should be used with care.

ApiCmdInitDiscretes The board has only one set of discrete registers. Configuring or setting a discrete
should be done with care.

4.5 Defining MIL-STD-1553 Protocol

If your application requires MIL-STD-1553 Type A for any or all RTs, you should include the System
function, ApiCmdDefMilbusProtocol, in your program. Default after ApiCmdReset is Type B.

22 MIL-STD-1553 - V24.18.0

LIBRARY ADMINISTRATION AND SYSTEM PROGRAMMING

Note:
This function is not available for all modules. Please see the reference manual for a detailed table of
supported functions for your module.

4.6 Defining External Connectivity

Initialization and configuration of the MILBus for your application may require the execution of the follow-
ing System and Calibration functions:

• ApiCmdCalCplCon - defines the coupling mode for the BIU:

The MILbus coupling network of the Programmable-PBI consists of sophisticated relay circuitry
which offers various coupling capabilities. The coupling modes which can be programmed by your
software application for each MILbus (primary and secondary) include:

– Isolated (Internal termination) (API_CAL_CPL_ISOLATED)

– Transformer coupled (API_CAL_CPL_TRANSFORM)

– Direct coupled. (API_CAL_CPL_DIRECT)

– Transformer coupled with resistive network emulation. (on-board MILbus network simulation)
(API_CAL_CPL_EXTERNAL)

– Onboard, digital wrap-around loop between MILbus Encoder and Decoder
(API_CAL_CPL_WRAP_AROUND_LOOP)

Note:
Have a look to the 1553 Reference Manual for some coupling restrictions on various board types.

In the network emulation mode, the MILbus emulation circuitry emulates a transformer-coupled
network without the use of MILbus couplers (using a resistor network). Thus, an external dual-
redundant MIL-STD-1553 Terminal can be directly connected to the module.

The following functions are examples of the ApiCmdCalCplCon function. The coupling parameter
you use will be dependent upon your MILbus configuration.

/ / Setup f o r I s o l a t e d Bus Coupl ing
ApiCmdCalCplCon (ulModHandle , 0 , API_CAL_BUS_PRIMARY , API_CAL_CPL_ISOLATED) ;
ApiCmdCalCplCon (ulModHandle , 0 , API_CAL_BUS_SECONDARY, API_CAL_CPL_ISOLATED) ;

• ApiCmdCalXmtCon - defines the amplitude of the MILbus transceiver: Some boards contain MIL-
STD-1553 transceivers that offer the capability to control the output amplitude on the MILbus via
the voltage control pins. If necessary for your application, the output amplitude of the MILbus
transceiver can be adjusted using the ApiCmdCalXmtCon function. Note that the relationship
between the input value and the transceiver might not be exactly linear. If exact output voltage
values are required it is recommended to determine the input values for each module type by
trying different values. See the Hardware Manual of the module for details.

A digital eight bit value (0..255) has to be provided as input to the ApiCmdCalXmtCon function.
The 100% value depends on the transceiver type, the coupling mode and the bus termination. A
typical value is 22 Volts peak-to-peak for a transformer coupled stub terminated with 70 Ohm.

MIL-STD-1553 - V24.18.0 23

LIBRARY ADMINISTRATION AND SYSTEM PROGRAMMING

Note:
The output amplitude value is dependent on the coupling mode setting.

The ApiCmdCalXmtCon function below adjusts the output amplitude:

/ / Modify Output Ampli tude (check wi th Scope) to 25%
ApiCmdCalXmtCon (ulModHandle ,0 ,API_CAL_BUS_PRIMARY,0 x40) ;
/ / Modify Output Ampli tude (check wi th Scope) to 63%
ApiCmdCalXmtCon (ulModHandle ,0 , API_CAL_BUS_PRIMARY,0 xA0) ;
/ / Set maximum
ApiCmdCalXmtCon (ulModHandle ,0 , API_CAL_BUS_PRIMARY,0 xFF) ;

Note:
This function is not available for all modules. Please see the reference manual for a detailed table of
supported functions for your module.

• ApiCmdCalSigCon - enables/disables a 1 Mhz square wave calibration test signal: The AIM
board is capable of generating a 1MHz test signal applied at the Encoder outputs of the primary
or secondary MILbus. This test signal can be enabled/disabled using the ApiCmdCalSigCon Cal-
ibration function. The amplitude of this signal can be controlled using the ApiCmdCalXmtCon as
described above. Following is sample code to enable the 1 Mhz test signal, modify the amplitude
output, reset the amplitude output to default, then disable the 1 Mhz test signal.

/ / Enable Test S igna l
ApiCmdCalSigCon (ulModHandle ,0 , API_CAL_BUS_PRIMARY , API_ENA) ;
/ / Modify Output Ampli tude (check wi th Scope) to 63%
ApiCmdCalXmtCon (ulModHandle ,0 , API_CAL_BUS_PRIMARY,0 xA0) ;
/ / Set maximum
ApiCmdCalXmtCon (ulModHandle ,0 , API_CAL_BUS_PRIMARY,0 xFF) ;
/ / Disable Test S igna l
ApiCmdCalSigCon (ulModHandle ,0 , API_CAL_BUS_PRIMARY , API_DIS) ;

4.7 Configuring Response Timeout

Configuration of timeout values for your application may require the execution of the following functions:

• ApiCmdDefRespTime - defines the timeout value (default is 14 µs) The Response Timeout value
is used in all modes of operation to define the minimum time the Bus Controller waits for a Status
Word response. The response timeout value is used by the Bus Controller and Bus Monitor as "No
Response" timeout and from the RT’s to calculate the RT-to-RT Status Word timeout. The default
timeout value, as initially configured using the ApiCmdReset function is set to 14µs for compliance
with the specification MIL-STD-1553B. The Response Timeout value, however, can be modified
by the ApiCmdDefRespTout function within a range of 0 to 63.75 in .25 µs steps.

Attention: Due to the Response-/Gap time measurement specification of MIL-STD-1553, the
Response time is measured from the mid-bit zero crossing of the last bit of the previous word to

24 MIL-STD-1553 - V24.18.0

LIBRARY ADMINISTRATION AND SYSTEM PROGRAMMING

the mid- zero crossing of the Command Sync of the current word. Thus, timeout value of (e.g.)
14µs allows a Bus dead time of 12µs at 1 Mbit Transmission Mode.

Note:
For broadcast transfers, the response timeout is used to check that no status word has responded.
Therefore, if the response timeout is greater than the Intermessage Gap Time in Standard Gap Mode,
the Intermessage Gap will be extended.

4.8 Utilizing IRIG-B

The API S/W Library provides four System function calls for IRIG-B processing, these include:

• ApiCmdSetIrigTime - Sets the IRIG-B time on the on-board IRIG timecode encoder

• ApiCmdSetIrigStatus - Sets the IRIG-B internal/external status on the on-board IRIG timecode
encoder

• ApiCmdGetIrigTime - Reads the IRIG-B time on the on-board IRIG timecode decoder

• ApiCmdGetIrigStatus - Reads the IRIG-B internal/external status on the on-board IRIG timecode
decoder

The following is an example of the ApiCmdSetIrigTime.

TY_API_IRIG_TIME a p i _ i r i g _ t i m e ;
/ / Set onboard IRIG t ime to Day 288 11:32:25 (Hours : Minutes : Seconds) ,
a p i _ i r i g _ t i m e . day = 288;
a p i _ i r i g _ t i m e . hour = 11
a p i _ i r i g _ t i m e . min = 32
a p i _ i r i g _ t i m e . sec = 25;
ApiCmdSetIrigTime (ulModHandle , &a p i _ i r i g _ t i m e) ;
/ / . . . wa i t 3 seconds u n t i l t ime i s locked . .

Note:
To obtain an accurate time stamp value you should delay the immediate reading of the IRIG time by 3
seconds.

Note:
IRIG time starts with "DAY one" (First of January) not with "DAY zero".

4.9 Interrupt Handling

If setup by the user, interrupts can be generated by the BC, RT, BM and/or Replay functions for different
events. Interrupt Log list Event Entries (see ApiInstIntHandler in API reference manual for Log list Event
Entry format) are updated by the BIU when an interrupt occurs.

MIL-STD-1553 - V24.18.0 25

LIBRARY ADMINISTRATION AND SYSTEM PROGRAMMING

The user-developed interrupt handler should include code to check the Interrupt Log list Event Entry for
expected interrupts and process as required based on the user’s application requirements.

Note:
The interrupts are asserted at the end of a transfer. Thus, more than one interrupt event for a BC/RT
transfer can become valid. In this case, only one interrupt entry with multiple interrupt reason bits set is
written to the interrupt log-list and one physical interrupt on the ASP will be asserted.

The functions available to setup interrupts and interrupt handler execution include the following Library
Administration functions:

• AiVmeInitGenericInterrupt - (only for VME environments) Allows to provide environment specific
interrupt setup and to set interrupt level and vector of the VME bus interrupt.

• ApiInstIntHandler - Provides a pointer to the interrupt handler function. The following code installs
an Interrupt Handler function named userInterruptFunction to handle interrupts generated by the
BC (API_INT_BC) and the RT (API_INT_RT). On 1553 modules the second argument is always
API_INT_LS.

/ / I n s t a l l I n t e r r u p t Handler f u n c t i o n to handle BC and RT i n t e r r u p t s
ApiInstIntHandler (ulModHandle ,

API_INT_LS ,
API_INT_BC ,
u s e r I n t e r r u p t F u n c t i o n) ;

ApiInstIntHandler (ulModHandle ,
API_INT_LS ,
API_INT_RT ,
u s e r I n t e r r u p t F u n c t i o n) ;

– The Interrupt Handler function is a function that you create to perform application specific
processing based on the type of interrupt to be monitored.

– Only one interrupt handler is required, however, you can also create one interrupt handler for
each type of interrupt.

– On Windows interrupt callbacks must be defined as __cdecl.

– Interrupt Handler function input parameters must follow a pre-defined format as defined in the
ApiInstIntHandler function call in the Reference Manual.

• ApiDelIntHandler - Removes the pointer interface to the interrupt handler function. This function
should be called prior to the module close (ApiClose). The following code uninstalls an Inter-
rupt Handler function used to handle interrupts generated by the BC (API_INT_BC) and the RT
(API_INT_RT).

/ / U n i n s t a l l the BC and RT i n t e r r u p t handler f u n c t i o n (s)
ApiDelIntHandler (ulModHandle , API_INT_LS , API_INT_BC) ;
ApiDelIntHandler (ulModHandle , API_INT_LS , API_INT_RT) ;

26 MIL-STD-1553 - V24.18.0

LIBRARY ADMINISTRATION AND SYSTEM PROGRAMMING

Interrupt Setup Process:

Create an Interrupt Handler function to process
interrupt/data when an interrupt occurs. See Api-
InstIntHandler for the function prototype required.

Include function call ApiInstIntHandler to initialize
the stream with a pointer to your Interrupt Handler

Setup the BC/RT/Bus Montitor/Replay function(s)
interrupt(s) as required by your application.

Delete the the host to AIM board in-
terrupt setup prior to the end of your
application using ApiDelIntHandler

1

2

3

4

Further definition and examples of these interrupt scenarios can be found in the BC, RT, BM or Replay
applicable sections to follow. In addition, the sample program, ls_interrupt_sample.c is included and
provides an excellent example of Interrupt Handling programming.

4.10 Debugging

The API S/W Library provides the developer with the capability to control the output of error messages
which are detected by the API S/W Library functions using the ApiSetDllDbgLevel function. One, multi-
ple, or all types of error messages can be enabled/disabled by using this function.

The default setting provides for the output of DBG_ERROR outputs to warn the application user of "out
of range" parameters within the API function parameters used in the software program and if any errors
occur within the on-board software. See Section 10 for additional troubleshooting techniques.

The types of error message outputs are shown in the following table:

Constant Description
DBG_DISABLED Force no debug output
DBG_INT Force interrupt related debug output
DBG_INIT Force initialization related debug output

Continued on next page

MIL-STD-1553 - V24.18.0 27

LIBRARY ADMINISTRATION AND SYSTEM PROGRAMMING

Continued from previous page
Constant Description
DBG_OPEN Force module open related debug output
DBG_CLOSE Force module close related debug output
DBG_IO Force module I/O related debug output
DBG_READREC Force recording related debug output
DBG_WRITEREP Force replay related debug output
DBG_MUTEX Force mutex related debug output
DBG_TRACE Log function calls in aim_mil.log
DBG_INFO Force informational debug output
DBG_ERROR Force general error related debug output (e.g. range check errors)
DBG_ERRORMSG Force error message box, if I/O to the board fails with error or range check fails
DBG_ALL Force all available debug output

4.11 GPIO Programming

Some AIM modules provide up to eight GPIO Discrete I/O signals. See the Hardware Manual of your
device for details and pinout. Depending on the hardware the GPIO can be used as input, as output or
both.

The following function calls are required to generate outputs or receive inputs from these GPIO pins:

• ApiCmdInitDiscretes – used to define whether the GPIO signal is to be as an input or output
signal. This function call must be called before either of the following two function calls.

• ApiCmdWriteDiscretes – used to generate a discrete output to one or more of the eight discrete
GPIO pins which have previously been configured as output with ApiCmdInitDiscretes.

• ApiCmdReadDiscretes – used to read whether the GPIO discrete register has been set. The
GPIO register bit set must have previously been configured as input with ApiCmdInitDiscretes.

• ApiCmdReadDiscretesConfig – used to read the current GPIOs configuration.

• ApiCmdReadDiscretesInfo - can be used to obtain information about the number of available
GPIOs and if these can be used as input, output or both.

• ApiCmdSysGetBoardInfo - can be used to obtain the number of available GPIOs
(TY_BOARD_INFO_DISCRETE_CNT) as well as their configuration (TY_BOARD_INFO_DISCRETE_CONFIG)

28 MIL-STD-1553 - V24.18.0

SIMULATION BUFFER PROGRAMMING

5 Simulation Buffer Programming

Data transferred and received on the bus by either the BC, the RT or both is stored in simulation buffers.
The following sections are here to provide a deeper understanding of how these buffers are handled by
the firmware and how data consistency in receive and transmit buffers can be ensured.

5.1 1553 Buffer Header Ids and Buffer Ids

Basically Buffer Header Ids and Buffer Ids are indexes within chunks of memory on the device. Since
the firmware requires one buffer for internal use the available ids start with 1. With a call to ApiCmdBCB-
HDef or ApiCmdRTBHDef the address of the data buffer is calculated and stored in the Buffer Header
descriptor. In case of a buffer queue size greater than API_QUEUE_SIZE_1 the size is stored in the
Buffer Header descriptor too.

The Figure 5.1.0-I shows the connection between BC/RT buffer headers and the Buffer ID in the Buffer
Pool. It is important to understand that on most devices there is only one Buffer Pool for all streams as
well as BC and RT. See Section 5.1.2 for additional information.

Figure 5.1.0-I: Buffer and Header ID connection

MIL-STD-1553 - V24.18.0 29

SIMULATION BUFFER PROGRAMMING

5.1.1 1553 Buffer Header IDs

Each stream has a separate chunk of memory for BC and for RT operation. This means that Buffer
Header IDs are not shared by BC, RT operation and are not shared between different streams.

The available BC Buffer Header IDs count can be obtained with ApiCmdSysGetMemPartition and is
stored in ax_BiuCnt[stream].ul_BcBhArea. A BC Buffer Header ID is configured with ApiCmdBCBHDef.

The available RT Buffer Header IDs count can be obtained with ApiCmdSysGetMemPartition and is
stored in ax_BiuCnt[stream].ul_RtBhArea. A RT Buffer Header ID is configured with ApiCmdRTBHDef.

5.1.2 1553 Buffer IDs

On most cards there is only one chunk of memory in which all Buffer Data is stored. A Buffer Id is an
index which is multiplied by 64 (32*16bit words) to get the start address of the requested buffer within
this chunk of memory. The first 32 byte are reserved for the firmware which is the reason why Buffer Ids
start with index one. The idea behind this concept is that Buffer Ids can be shared. The same chunk of
on board memory, identified by its id, can be assigned to a receive and an transmit buffer. This enabled
the board to forward received data on a different Stream, BC and/or SA.

The available Buffer IDs count can be obtained with ApiCmdSysGetMemPartition and is stored in
x_Sim[0].ul_BufCount. In case of an ACX-6U card which has a second memory all streams of the
second PBI use the ids from x_Sim[1].ul_BufCount.

Be aware that multiple consecutive ids are occupied if a buffer queue is configured with ApiCmdBCB-
HDef or ApiCmdRTBHDef qsize greater than API_QUEUE_SIZE_1.

The Figure 5.1.2-I contains unique single buffers, unique buffer queues and one shared single buffer.
The Buffer ID 10 is assigned as single buffer to BC Header ID 6 as well as RT Header ID 1. Thus any
data received into this buffer will be transmitted with the next transmit operation. Regardless of BC or
RT receive/transmit operation.

Buffer Ids 2 to 5 belong to a buffer queue assigned to BC Header 2. This means that Buffer IDs 3,4 and
5 even though never referenced directly in the application are used by the Firmware and should not be
assigned to a different Header Id. The exception to this rule would be a shared buffer as explained with
Buffer Id 10 above.

Be extra careful when choosing a Buffer Id. It is common practice to split the available ids into blocks of
ids used for one stream and BC or RT.

30 MIL-STD-1553 - V24.18.0

SIMULATION BUFFER PROGRAMMING

Figure 5.1.2-I: Example Buffer and Header ID usage

MIL-STD-1553 - V24.18.0 31

SIMULATION BUFFER PROGRAMMING

5.2 1553 Buffer Data Consistency

In order to guarantee real time behavior of the firmware there is no read and write lock implemented
between the firmware and the host software. Because the firmware and the host software run asyn-
chronously writing to a 1553 buffer might clash with reading the same buffer on a different processor.
In order to guarantee buffer data consistency the host application needs to be synchronized with the
firmware. There are two options commonly used. In the first option buffer read and write access by
the host is done within an interrupt callback function. In the second option buffer queues are used to
maintain a set of buffers that can be read while the firmware updated the other buffers in the queue.
It is also common to have a combination of both methods. For buffer write access the most common
way is using a double buffer mechanism with a host controlled buffer and interrupt synchronization. For
data buffer read access it is more common to have a cyclic queue that can be polled. Both methods are
implemented within our BSP sample program and described below.

Transmit double buffering can also be implemented in a host controlled way. In this case the firmware
will not alter the buffer queue index itself but will use the same index over and over again. The host
application can update the inactive buffer without provoking a collision. After the buffer update the buffer
index used by the firmware can be updated by the host application. This does however only work if the
buffer update rate is lower than the firmware transmission buffer rate.

5.2.1 sample/src/ls_interrupt_sample.c

This sample that can be found in the BSP sample folder shows how a consistent 1553 buffer can be
updated by the host while it is transmitted on the bus. The sample uses a combination of a cyclic double
buffer and synchronizes the buffer update with the firmware by using interrupt callbacks.

ApiCmdRTBHDef is used with qsize set to API_QUEUE_SIZE_2 to generate a cyclic double buffer. This
gives the host application more time to update the buffer in case of high OS latency. In case of a OS with
low latency a single buffer could be used as well as long as the buffer transmission rate on the 1553 bus
is known to be lower than the OS interrupt latency and buffer write call time. Note that interrupt latency
values and buffer update times are hardware architecture and OS specific and can not be provided by
AIM.

ApiCmdBCXferDef tic parameter set to API_BC_TIC_INT_ON_XFER_END is used to enable the user
interrupt generation on the dedicated transfer.

ApiInstIntHandler with parameters API_INT_BC and BcInterrupt is used to provide the library with the
callback function BcInterrupt to be called every time the transfer transmitted.

As soon as the BC framing is started the callback function BcInterrupt is called every time the firmware
finished transmitting the transfer. We know which buffer the firmware transmitted and we can update this
inactive buffer while the firmware might already send the second active buffer.

The advantage of the double buffer is that we can work with higher interrupt latencies. The disadvantage
is that we are always one buffer behind, meaning the data we write will be transmitted by the next but
one transfer.

The BcInterrupt callback handles only a single transfer. If multiple transfers need to be handled in the
same way the parameters provided can be used to decode the transfer id and other information. See

32 MIL-STD-1553 - V24.18.0

SIMULATION BUFFER PROGRAMMING

description of ApiInstIntHandler within the 1553 Reference Manual for details.

5.2.2 sample/src/ls_buffer_queue_sample.c

The 1553 buffer queue sample shows the approach of using a cyclic receive buffer queue to store the
incoming data. The host application polls the receive queue and reads one or more inactive receive
buffers from the queue while the firmware can safely write to the current index. Depending on the queue
size this approach can buffer cases where the host application might not be in time to read the buffer.
The bigger the queue size is the more delayed can the host application be before the buffer is read.

ApiCmdRTBHDef is used with qsize API_QUEUE_SIZE_16 to assign 16 consecutive buffers to the RT
receive buffer header. The queue is set up in API_BQM_CYCLIC mode letting the firmware restart at
the beginning when the end of the queue is reached.

ApiCmdRTSAMsgReadEx is used to get the current buffer queue index. If the current index is different
from the last call the firmware received at least one buffer. In this case the sample application reads all
the buffers from the last read position up to one before the current position. The firmware points to the
buffer that will be updated next.

MIL-STD-1553 - V24.18.0 33

BUS CONTROLLER PROGRAMMING

6 Bus Controller Programming

The main function of the BC is to provide data flow control for all transfers on the bus. In addition to
initiating all data transfers, the BC must transmit, receive and coordinate the transfer of information on
the data bus. All information is communicated in command/response mode. The BC sends a command
to the RTs, which reply with a response. Information Transfer Formats are shown in Section 2.

Normal BC dataflow control includes transmitting commands to RTs at predetermined time intervals
as defined in the minor/major frame definition. The commands may include data or request for data
(including status) from RTs. Command word, Data word and Status word formats are shown in Section 2.
The BC has control to modify the flow of bus data based on changes in the operating environment. These
changes could be a result of an air-to-ground attack mode changing to air-to-air, or the failure mode of
a hydraulic system. The BC is responsible for detecting these changes and initiating action to counter
them. Error detection may require the BC to attempt communication to the RT on the redundant, backup
bus.

If your application requires the simulation of a BC, this section will provide you with the understanding
of the BC programming functions required for use within your application. Programming the BC may
require the use of more than just the BC functions. Also needed may be the Buffer and FIFO functions.
This section will discuss some of the typical scenarios a programmer would encounter that would require
the use of the Buffer, FIFO and BC functions respectively. These scenarios include:

• Initializing the BC

• Defining 1553 transfers

– BC transfers using single buffers

– BC transfers using multiple buffers

– BC transfers using FIFOs

– BC transfers with dynamic data

• BC transfers with error injection

• Defining Minor/Major frames

– Standard Framing Mode

– BC Instruction Table Mode

• Starting the BC

• Acyclic 1553 transfers

• BC Interrupt programming

• Status word exception handling

6.1 Initializing the BC

Initialization of the BC must be the first BC setup function call issued. This function call, ApiCmdBCIni,
will perform setup of the BC global transfer characteristics including:

34 MIL-STD-1553 - V24.18.0

BUS CONTROLLER PROGRAMMING

• Transfer Retry Protocol - Definition of the number of retries the BC will perform if a transfer is
erroneous, the retry mechanism and the bus switching protocol include selection of one of the
following:

– Retry disabled

– One retry on the alternate bus

– One retry on the same bus, one retry on the alternat bus

– Two retries on the same bus, then one retry on the alternate bus

• Service Request Control - When enabled the BC will perform specific pre-defined actions when
the Service Request bit in the status word received by the BC is set. The specific pre-defined ac-
tion the BC will perform is defined for each transfer using the ApiCmdBCXferDef function. When
this Service Request function is enabled (with the ApiCmdBCIni function), and the BC receives a
status word with the Service Request Bit set, the BC will automatically generate and transmit to the
RT a Transmit Vector Word mode code (Mode code 16). A Vector Word will then be transmitted by
the RT containing information indicating the next action to be taken by the BC. The actions taken by
the BC following the receipt of the vector word are also defined by the ApiCmdBCXferDef function.
Note:
If Status Word Exception handling is required for any RT, this function must enable Service Request
capability for the BC.

• BC Transfer Bus Mode/Global Start Bus - Provides one of the following options:

– Allows the user to select the bus (primary or secondary) used for a transfer on a transfer-by-
transfer basis (using ApiCmdBCXferDef)

– Allows the user to specify a default bus (primary or secondary) for all MILBus transfers

Note:
Transfer Bus Mode Global (API_TBM_GLOBAL) is not available for all modules. Please see the refer-
ence manual for a detailed table of supported functions for your module.

The following code example uses API S/W Library constants to initialize the BC for Retry disabled,
Service Request disabled, Transfer Bus Mode setup so that individual transfers can define the bus used
for the transfer using ApiCmdBCXferDef. (The last parameter is ignored since the bus used for transfers
can be defined individually.)

ApiCmdBCIni (ulModHandle ,0 ,
API_DIS , / / r e t r − Retry Mode
API_DIS , / / svrq − Serv ice Request / Vector Word Mode
API_TBM_TRANSFER, / / tbm − Transfer Bus Mode
API_XFER_BUS_PRIMARY) ; / / gsb − Global S t a r t Bus

Note:
ApiCmdBCIni must be called first when programming the BC regardless of the framing mode (Standard
or Instruction Table Mode).

MIL-STD-1553 - V24.18.0 35

BUS CONTROLLER PROGRAMMING

6.2 Defining 1553 Transfers

Transfers controlled/generated by the BC will follow the formats/protocol as shown in the Information
Transfer Formats in Section 2. The API S/W Library divides transfers into three basic types: BC-to-RT,
RT-to-BC and RT-to-RT. Variations of these types of transfers include Mode commands and Broadcast
commands.

The API S/W Library supports definition of a minimum value of 511 unique 1553 transfers. See Sec-
tion 3.5.1 for details on how to obtain the maximum number of available ids. A transfer ID must be
assigned by the user for each transfer. The method used by the AIM 1553 bus interface module to
accomplish the transfer of the Command, Status and/or Data words within the transfers is to utilize a
common buffer pool containing the message buffers located in Global RAM as shown in Figure 5.1.0-I.
All BC message transfers require the user to assign at least one Global RAM message buffer. The
message buffer will be used to transmit/receive the Data words within the message transfer. If there are
no Data words within the transfer, a message buffer will still need to be assigned. (However, the API
S/W Library does not prevent the user from using the same buffers in more than one transfer, therefore,
the same message buffer can be assigned for transfers that do not require the transmission/reception of
Data word(s)). Each message buffer has a unique ID which must be assigned by the user.

In addition to the assignment of the message buffer(s) for each transfer, a Buffer Header ID must be
assigned for the BC to enable the processor to identify the location of the buffers used and status and
event data generated for each transfer.

1553 transfers will require the use of the following BC function calls:

• ApiCmdBCBHDef - this BC function will define a BC Buffer Header structure. As shown in Fig-
ure 5.1.0-I, the BC Buffer Header structure enables the processor to identify the location of the
message buffers used and status and event data generated for each 1553 transfer. The BC Buffer
Header information to be setup by this function includes the following:

– BC Buffer Header ID - the ID of the BC Buffer Header structure.

– Message Buffer ID - the ID of the first buffer in the Global RAM message buffer pool to be
used for the transfer of the Data words. See Section 3.5.1 for details on how to obtain the
maximum number of available ids. The buffers are shared between BC and RT. A Message
Buffer ID of 20 would indicate that the 20th buffer in the Global RAM Buffer Pool will be used.
See Figure 5.1.0-I for a diagram of the structure of these message buffers.

– Buffer Queue Size - the number of Global RAM message buffers to be used for the transfer
of the Data words. One or more buffers can be used for the transfer. You will always need
to assign at least one message buffer from the Global RAM Buffer Pool for your transfer. For
example, assigning API_QUEUE_SIZE_8 for a transfer indicates that 8 contiguous buffers.
Using the example of Message Buffer ID of 20 above, and a queue size of 8, message buffers
20 - 27 would be used for the transfer.

– Buffer Queue Mode - specifies the order in which multiple buffers as specified in the Buffer
Queue Size, will be filled. In most cases, users will choose to store the Data words into the
Message Buffers in a cyclic fashion (API_BQM_CYCLIC)

– Data Buffer Store Mode - will allow the user to indicate the actions to be taken in case of
error in the transmission or reception of Data words such as whether to keep transmitting the
same message buffer at transfer error, or continue with the next buffer in the queue for the
next transmission.

36 MIL-STD-1553 - V24.18.0

BUS CONTROLLER PROGRAMMING

Note:
Buffer Queue Size, Buffer Queue Mode, Data Buffer Store Mode, and Buffer Size and the Current Buffer
Index can be modified "on the fly" (i.e. after the BC has been started) using the Buffer function call
ApiBHModify.

• ApiCmdBCXferDef - this BC function will utilize the TY_API_BC_XFER structure to define the
properties of a 1553 transfer. Information contained in this structure will be used to create the
Command word, Data word(s)/Mode Code and define the process for handling the Status word. It
will also include error injection setup. This information will be sent to the BIU when this function is
called.

The information contained in the structure TY_API_BC_XFER includes the information defined in the
following table.

Struct Element Definition CW
xid Transfer ID
hid Buffer Header ID - defines the ID of the Buffer Header that tracks the mes-

sage buffer(s) used for this transfer.
type Transfer Type - BC-to-RT, RT-to-BC, RT-to-RT X
chn MILbus - Primary or secondary bus to be used for this transfer
xmt_rt Transmitting RT - RT address/number of the transmitting terminal (N/A for

BC-to-RT transfer)
X

rcv_rt Receiving RT - RT address/number of the receiving RT (N/A for RT-to-BC
transfer)

X

xmt_sa Transmitting RT subaddress - RT subaddress of the transmitting terminal
or mode control indication (0 or 31)(N/A for BC-to-RT transfer)

X

rcv_sa Receiving RT subaddress - RT subaddress of the receiving terminal or
mode control indication (0 or 31) (N/A for RT-to-BC transfer)

X

wcnt Word Count/Mode Code field - contains either the word count or the Mode
code

X

tic Interrupt control - setup for generation of a BC interrupt upon end of trans-
fer, transfer error or status word exception

hlt Halt control - setup to halt the BC upon end of transfer, transfer error, status
word exception or any interrupt

sxh Status word exception handling - defines the process to execute upon oc-
currence of a Status word Service Request

swxm Status Word Exception Mask - defines the bits in the status word received
by the RT that will be checked by the BC

rsp Expected Response - defines the response the BC expects from the RT
such as basic response as defined by ApiCmdDefMilbusProtocol, no status
word 1 expected, or no status word 2 expected.

rte Retry enable flag - enables or disables retry of this transfer upon transfer
error. Also allows the user to alternate tranmission of this transfer between
the Primary and the Secondary bus.

gap_mode Gap Mode - defines the gap between this transfer and the next transfer
gap Gap Value - defines the transfer wait time for the gap mode specified above.
err.type Error Injection Type - defines 1 of the 14 possible error injection schemes
err.sync Error Sync Pattern - sync pattern to be used for command sync or data

sync error injection scheme
Continued on next page

MIL-STD-1553 - V24.18.0 37

BUS CONTROLLER PROGRAMMING

Continued from previous page
Struct Element Definition CW

err.contig Gap Error or Zero Crossing Error Value - the number of half bits to be used
for the Gap Sync Error injection scheme or the Zero Crossing Error value
to be used for the Zero Crossing Error injection scheme.

err.err_spec Word Position - the location of the 1553 transfer word for which the specified
error will occur

err.err_spec Bit Position- the location of the bit in the 1553 transfer word (above) for
which the specified error will occur

err.err_spec Number of bits - the number of bits at the location of the bit (above) in the
1553 transfer word (above) for which the specified error will occur

The following excerpt of code is an example of setting up the BC for a BC-to-RT transfer to RT1, SA1
with a data word count of 4. This 1553 transfer is to be put on the secondary bus, has no associated
interrupts, no requests for halt control, no service request handling, no error injection and specifies a
gap of 0 µs will cause the BC to generate an intermessage gap of approximately 11 µs.

/ / BC−RT Transfer XF2 : C01_R_01_04 (RT01 ,RCV, SA01 ,WC4)
memset (&api_bc_xfer , 0 , sizeof (ap i_bc_x fer)) ;
x f e r _ i d = 2;
ap i_bc_x fer . x id = x f e r _ i d ; / / T rans fer ID
ap i_bc_xfer . h id = bc_hid ; / / BID Bu f fe r Header ID
ap i_bc_xfer . type = API_BC_TYPE_BCRT ; / / T rans fer Type
ap i_bc_xfer . chn = API_BC_XFER_BUS_SECONDARY ; / / MILbus
ap i_bc_xfer . xmt_r t = 0 ; / / XMT−RT
ap i_bc_xfer . r c v _ r t = 1 ; / / RCV−RT
ap i_bc_xfer . xmt_sa = 0; / / XMT−SA
ap i_bc_xfer . rcv_sa = 1; / / RCV−SA
ap i_bc_xfer . wcnt = 4 ; / / Word Count f i e l d
ap i_bc_xfer . t i c = API_BC_TIC_NO_INT ; / / I n t e r r u p t c o n t r o l
ap i_bc_xfer . h l t = API_BC_HLT_NO_HALT ; / / Ha l t c o n t r o l
ap i_bc_xfer . rsp = API_BC_RSP_AUTOMATIC ; / / Response c o n t r o l
ap i_bc_xfer . sxh = API_BC_SRVW_DIS ; / / Serv ice Req Handl ing
ap i_bc_xfer . r t e = API_DIS ; / / Retry d isab led
ap i_bc_xfer . swxm = 0; / / Status Word Except ion Mask
ap i_bc_xfer . gap_mode = API_BC_GAP_MODE_DELAY ; / / Gap Mode
ap i_bc_xfer . gap = 0; / / use d e f a u l t gap
ApiCmdBCXferDef (ulModHandle ,0 , &api_bc_xfer , &addr) ;

All structs should be initialized to zero with a memset call. All zero parameters can then be skipped
during struct initialization.

The following table provides examples of how to change the values in the Transfer definition to setup
different types of 1553 transfers.

38 MIL-STD-1553 - V24.18.0

BUS CONTROLLER PROGRAMMING

1553 BC Transfer Definition Parameters
Transfer structure Broadcast Xfer with

word count of 2
RT-to-BC Xfer to
RT02, SA03 with
word count of 5

Mode code Xfer to
RT05 SA0 where
mode code = 17
(synchronize)

RT-to-RT Xfer from
RT04 SA2 to RT03
SA1 with word
count = 32

api_bc_xfer.type API_BC_TYPE_BCRT API_BC_TYPE_RTBC API_BC_TYPE_BCRT API_BC_TYPE_RTRT
api_bc_xfer.xmt_rt 0 2 0 4
api_bc_xfer.rcv_rt 31 0 5 3
api_bc_xfer.xmt_sa 0 3 0 2
api_bc_xfer.rcv_sa 1 0 0 1
api_bc_xfer.wcnt 2 5 17 0

6.3 BC Transmit and Receive Message Data Word Generation/Processing

Now that you are familiar with the method used to define the characteristics of the 1553 transfers gen-
erated by a simulated BC, we can now discuss the following:

• How to setup and place data into the message buffers assigned for Data word transmissions by
the BC for BC-to-RT and BC Broadcast type transfers.

• How to setup and obtain data from the message buffers used for Data word reception by the BC
for RT-to-BC type transfers.

6.3.1 For BC-to-RT and BC Broadcast Type Transfers (BC Transmit)

The API S/W Library provides several methods to insert real-time/dynamic/fixed user data into the Global
RAM 1553 Message Buffers used by the BC transmitting side of the 1553 transfer and specified in the
ApiCmdBCBHDef function described in the previous section. The methods and functions used for each
method are summarized in the following table.

Data Source Functions Used
Fixed Data

1. ApiCmdBCBHDef
2. ApiCmdBCXferDef
3. ApiCmdBufDef to initialize buffer with fixed data words (or ApiCmdBufWrite to initialize a

buffer with a single 16-bit word)

With Dynamic
Data Words 1. ApiCmdBCBHDef

2. ApiCmdBCXferDef
3. ApiCmdBufDef to setup non-dynamic data
4. ApiCmdBCDytagDef to setup 1-4 dynamic data words

Continued on next page

MIL-STD-1553 - V24.18.0 39

BUS CONTROLLER PROGRAMMING

Continued from previous page
Data Source Functions Used
Using FIFOs

1. ApiCmdBCBHDef
2. ApiCmdBCXferDef
3. ApiCmdFifoIni to initialize the FIFO
4. ApiCmdBCAssignFifo to assign the FIFO to the transfer
5. ApiCmdFifoReadStatus to determine how much FIFO data to reload
6. ApiCmdFifoWrite to fill the FIFO with data

With Dynamic
Dataset Buffers 1. ApiCmdBCBHDef

2. ApiCmdBCXferDef
3. ApiCmdRamWriteDataset to fill the dataset buffers with data to be used in the message

buffers
4. ApiCmdSystagDef to assign the Dataset buffers to the transfer

Using an in-
terrupt han-
dler routine to
interrupt on
end-of-transfer

See Section 6.8

The Dynamic Data Word Generation method and the FIFO and Dynamic Dataset methods are described
further in the following sections.

6.3.1.1 Dynamic Data Word Generation

Using the API function calls describe in the previous section, you can setup function generators to
dynamically change data words within the transmit message buffer. The Function generators available
are summarized in the following table.

Mode Description
Function Mode Provides for up to two dynamic data words per transfer using any combination of the following

functions as pictured in Figure 6.3.1-I

1. Positive Ramp
2. Negative Ramp
3. Positive Triangle
4. Negative Triangle
5. Transmit a Data word from a different Message Buffer

Continued on next page

40 MIL-STD-1553 - V24.18.0

BUS CONTROLLER PROGRAMMING

Continued from previous page
Mode Description
Tagging Mode Provides for up to four dynamic data words per transfer using Sawtooth Tagging. The Sawtooth

Tagging mode provides an incrementer by 1, which is performed on the user-specified location
with each execution of the associated BC transfer. The location to be incremented can be setup
with an initial value to be incremented each transfer, or the existing value can be incremented. The
options are to increment any combination of the following byte or words:

1. 16-Bit Sawtooth
2. 8-Bit Sawtooth LSB (lower byte of word)
3. 8-Bit Sawtooth MSB (upper byte of word)

Figure 6.3.1-I: Data Generation Functions Diagram

6.3.1.2 Using FIFOs and Dataset Buffers for Data Generation

BC transfer data can be defined using FIFOs or Datasets using the API function calls described in
Section 6.3.1. The basic concept of each method is described below and shown in Figure 6.3.1-II:

• Assign a FIFO (ASP Shared RAM) to the transfer. (Each FIFO consists of 128 32-word buffers.
There are 32 FIFOs.) Pre-fill the FIFO with application data, the data transmitted in the Global
RAM message transmit buffer will be obtained from the FIFO. Re-fill the FIFO as needed.

• Assign Dataset buffers (ASP Shared RAM) to the transfer. (There are 4095 32-word buffers in the
Dataset Buffer pool.) Pre-fill the Dataset buffer(s) with application data, the data transmitted in the
Global RAM message transmit buffer will be obtained from the Dataset buffers. Refill the Dataset
buffers as needed.

MIL-STD-1553 - V24.18.0 41

BUS CONTROLLER PROGRAMMING

Figure 6.3.1-II: BC Transfer Data Generation via FIFO or Dataset Buffers

42 MIL-STD-1553 - V24.18.0

BUS CONTROLLER PROGRAMMING

6.3.2 For RT-to-BC Type Transfers (BC Receive)

Before the BC receives the Data words from the RT, as part of the setup process, you may choose to
clear your receive buffer to avoid any Data word transmission confusion. The receive buffers can be
cleared before use by using the ApiCmdBufDef function.

After the BC has received Data words from an RT, software will need to be added to process the data.
Processing data received by the BC can be accomplished in one of two ways: polling at pre-defined
intervals to examine the BC data, or setting up the transfer to interrupt at end-of-transfer. To accomplish
the interrupt on end-of-transfer method of processing the data, an interrupt handler routine would need
to be developed to handle the interrupt which will occur after all Data words have been received. Upon
end-of transfer interrupt, the interrupt handler would be called at which time the buffer could be read and
processed as required by the application. Interrupt handling is discussed further in Section 6.8.

6.4 BC Transfers with Error Injection

BC transfers can be configured for error injection in any Command word or Data word transmitted by the
BC. The BC is capable of injecting one of the following errors for a defined transfer:

• Command Sync Error - changes the transmitted Command word sync pattern to one specified
by the user

• Data Sync Error - changes the transmitted Data word sync pattern to one specified by the user

• Parity Error - creates a parity error for the Command word or specified Data word

• Manchester stuck at high error - creates a Manchester stuck at high error for a specified Com-
mand word, or Data Word at a specified bit position

• Manchester stuck at low error - creates a Manchester stuck at low error for a specified Command
word, or Data Word at a specified bit position

• Gap error - inserts specified Gap after defined Command or Data word

• Word Count High - transmits the number of Data words defined for the original transfer plus one

• Word Count Low - transmits the number of Data words defined for the original transfer minus one

• Bit Count High - transmits a specified number (1-3) additional bits for specified Command word
or Data word.

• Bit Count Low - transmits a specified number (1-3) less bits for specified Command word or Data
word.

• Zero Crossing Low Deviation Error - implements zero crossing low deviation at a specified
Command word or Data word position, bit position with four predefined deviation values.

• Zero Crossing High Deviation Error - implements zero crossing high deviation at a specified
Command word or Data word position, bit position with four predefined deviation values.

MIL-STD-1553 - V24.18.0 43

BUS CONTROLLER PROGRAMMING

To setup for BC Command/Data word error injection, the transfer definition parameters pertaining to
error injection should be set. The following error injection sample code will setup the transfer to inject a
Data Sync Error on the third data word.

Set BC to RT RT01 RCV SA01 WC15 (Inject Data Sync Error in 3rd data word)

wpos = 3; / / I n j e c t E r ro r on the 3 data word
bpos = 0; / / not used
bc_b i t s = 0 ; / / not used
memset (&api_bc_xfer , 0 , sizeof (ap i_bc_x fer)) ;
ap i_bc_x fer . x id = 1 ; / / T rans fer ID
ap i_bc_xfer . h id = 1; / / BID Bu f fe r Header ID
ap i_bc_xfer . type = API_BC_TYPE_BCRT ; / / T rans fer Type
ap i_bc_xfer . chn = API_BC_XFER_BUS_PRIMARY ; / / Bus
ap i_bc_xfer . r c v _ r t = 1 ; / / Receive RT
ap i_bc_xfer . rcv_sa = 1; / / Receive SA
ap i_bc_xfer . wcnt = 15; / / Word Count f i e l d
ap i_bc_xfer . gap_mode = API_BC_GAP_MODE_DELAY ; / / Gap Mode
ap i_bc_xfer . e r r . type = API_ERR_TYPE_DATA_SYNC ; / / e r r o r i n j e c t i o n type
ap i_bc_xfer . e r r . sync = 0x30 ; / / i n v a l i d data sync 110000
ap i_bc_xfer . e r r . con t i g = 0 ; / / not used
ap i_bc_xfer . e r r . err_spec = 0;
ap i_bc_x fer . e r r . err_spec |= (wpos << 16) ; / / word pos
ap i_bc_xfer . e r r . err_spec |= (bpos << 8) ; / / b i t pos
ap i_bc_xfer . e r r . err_spec |= (bc_b i t s << 0) ; / / b i t count
ApiCmdBCXferDef (ulModHandle ,0 , &api_bc_xfer , &addr) ;

6.5 Defining Minor/Major Frames Content & Timing

Once you have defined your 1553 transfers you will then need to program the device to insert the
transfers into the minor/major frames as defined by your unique application requirements. In addition,
you can program the BC with one of various options to time the transmission of the minor frames within
the major frames. There are two methods provided in the API S/W Library to define the minor and major
frames of the BC Bus traffic as follows:

• Standard Framing Mode - use this method if your application requires no more than 512 minor
frames per major frame and no more than 128 transfers per minor frame. This method is more
simplistic in that fewer functions are required.

• BC Instruction Table Mode - use this method if your application requires more than 512 minor
frames per major frame, more than 128 transfers per minor frame, or the Standard Framing mode
does not provide the BC instructions needed to support your framing requirements. In BC Instruc-
tion Table mode, major/minor frame size is only limited by allocation of the BC instruction list size
in Global Memory. It is more complex, but it provides greater flexibility allowing creation of all avail-
able firmware instructions to be defined within the BC Instruction List and usage of several more
minor frame transfer/instruction options.

44 MIL-STD-1553 - V24.18.0

BUS CONTROLLER PROGRAMMING

Each mode utilizes the same API S/W Library function, ApiCmdBCStart, to start execution of the BC as
defined in Section 6.6. The next two subsections will describe the instructions required for each framing
mode.

6.5.1 Standard Framing Mode

In Standard Framing mode, the MIL-STD-1553 device supports up to 128 transfers per minor frame
and 512 minor frames per major frame. With Standard Framing mode, you will first be defining all the
minor frames (ApiCmdBCFrameDef) then defining which of those minor frames will be placed in the
major frame (ApiCmdBCMFrameDefEx). Further definition of these two API S/W Library function calls
associated with the definition of the minor/major frames for this mode include:

• ApiCmdBCFrameDef - Defines the sequence of 1553 transfers within a minor frame. The Minor
frame characteristics defined by this function include:

– Minor Frame ID - an ID that you define for the minor frame (1 - 64 is available)

– Number of Instructions (Transfers) in the Minor frame

– Type of instruction - Generally this parameter is the 1553 Transfer ID, however, the API S/W
Library provides for advanced programming of the minor frames other than transfer identifica-
tion. Instructions which can be executed by the BC at the programmed location in the minor
frame are as follows:

Constant Description
API_BC_INSTR_TRANSFER Execute BC Transfer
API_BC_INSTR_SKIP BC Skip (skip a specified number of instructions)
API_BC_INSTR_WAIT BC Wait (wait a specified delay time).
API_BC_INSTR_STROBE BC external Strobe (output strobe pulse)

• ApiCmdBCMFrameDefEx - Defines the sequence of minor frames within the major frame using
the Minor Frame IDs defined in the ApiCmdBCFrameDef function above. Therefore, this function
should be executed after the ApiCmdBCFrameDef function above.

The following example defines minor/major frames using the Standard Framing mode. This sample
code demonstrates the setup of minor and major frames and the starting of the BC using 4 previ-
ously setup transfers with Transfer IDs of 1 through 4. The first minor frame includes 5 instructions;
(1) execute Transfer 1, (2) execute Transfer 2, (3) execute a wait delay of 1 millisecond, (4) execute
Transfer 3, (5) execute Transfer 4. The second minor frame has only one instruction; (1) execute
Transfer 1. The second minor frame has only one instruction; (1) execute Transfer 1.

Define Minor Frames:

MIL-STD-1553 - V24.18.0 45

BUS CONTROLLER PROGRAMMING

/ * Minor Frame 1 Trans fer sequence * /
api_bc_frame . i d = 1 ; / / Minor frame I d e n t i f i e r
api_bc_frame . cnt = 5 ; / / I n s t r u c t i o n s count
api_bc_frame . x id [0] = 1 ; / / T rans fer 1
api_bc_frame . i n s t r [0] = API_BC_INSTR_TRANSFER ;
api_bc_frame . x id [1] = 2 ; / / T rans fer 2
api_bc_frame . i n s t r [1] = API_BC_INSTR_TRANSFER ;
api_bc_frame . x id [2] = 4000; / / 1 ms delay i n 250ns increments
api_bc_frame . i n s t r [2] = API_BC_INSTR_WAIT ;
api_bc_frame . x id [3] = 3 ; / / T rans fer 3
api_bc_frame . i n s t r [3] = API_BC_INSTR_TRANSFER ;
api_bc_frame . x id [4] = 4 ; / / T rans fer 4
api_bc_frame . i n s t r [4] = API_BC_INSTR_TRANSFER ;
ApiCmdBCFrameDef (ulModHandle ,0 ,& api_bc_frame) ;

/ * Minor Frame 2 Trans fer sequence * /
api_bc_frame . i d = 2 ; / / Minor frame I d e n t i f i e r
api_bc_frame . cnt = 1 ; / / I n s t r u c t i o n s count
api_bc_frame . x id [0] = 1 ; / / T rans fer 1
api_bc_frame . i n s t r [0] = API_BC_INSTR_TRANSFER ;
ApiCmdBCFrameDef (ulModHandle ,0 ,& api_bc_frame) ;

Define Major Frame:

/ * Minor Frame sequence i n Major Frame * /
api_bc_mframe_ex . cnt = 2 ; / / Number o f Minor Frames
api_bc_mframe_ex . f i d [0] = 1 ; / / Minor Frame 1
api_bc_mframe_ex . f i d [1] = 2 ; / / Minor Frame 2
ApiCmdBCMFrameDefEx (ulModHandle ,0 ,& api_bc_mframe_ex) ;

6.5.2 BC Instruction Table Mode

In BC Instruction Table mode, the number of minor frames and major frames supported is limited only
by the amount of memory allocated for the BC Instruction Table list. In this mode, the user defines
both minor and major frames within one Instruction Table (ApiCmdBCInstrTblGen). Each minor frame
defined in the Table is associated with a user-defined label. If you are using BC Instruction Table mode
to setup your minor/major frames, all programmed actions the BC is to take is to be entered into the BC
Instruction Table manually using the appropriate BC Instruction mode functions defined below.

There are two API S/W Library function calls associated with the definition of the minor/major frames
and minor frame timing for this mode including:

• ApiCmdBCInstrTblIni - Initializes the BC Instruction Table mode. This function internally calls
ApiCmdSysMemLayout to obtain the size and start address of the BC Instruction List from the
Global memory layout.

46 MIL-STD-1553 - V24.18.0

BUS CONTROLLER PROGRAMMING

• ApiCmdBCInstrTblGen - Clears/Converts/Writes the BC Instruction Table which contains the mi-
nor frame(s) and the major frame information/definition.

Clears - Initializes the BC Instruction Table to all zeros. (Zeros are considered No-Op instructions
by the BC controller.)

Converts - Converts the user-defined BC Instruction Table entries into an array of firmware in-
struction long-words (which are written into the BC Instruction list area of Global Memory using
the Write command). Prior to the execution of this command the user must define the BC Instruc-
tion Table entries using TY_API_BC_FW_INSTR structure for each BC Instruction Table entry. BC
Instruction Table entries include the following:

– Label - a unique user-defined 16-Bit value used as address

– Firmware Operational code (Opcode) - instructions to be executed within the minor fame.
These instructions consist of one or more of the codes shown in the following table:

Constant Description
API_BC_FWI_XFER Execute BC Transfer (defined using ApiCmdBCXferDef)
API_BC_FWI_CALL Call Subtable - allows you to jump to a subtable/minor frame definition

identified with a label.
API_BC_FWI_RET Return from Subtable - used to return to the main BC Instruction Table

entry following the related API_BC_FWI_CALL opcode.
API_BC_FWI_JUMP Jump to Subtable / Instruction - absolute jump to an Instruction Table

entry identified by a label.
API_BC_FWI_SKIP Relative Branch (Skip) - skip a user-specified number of instructions
API_BC_FWI_WTRG Wait for BC Trigger input - ties the external pulse to start of minor

frames, or starts execution of the major frame based on the external
pulse

API_BC_FWI_STRB Strobe BC Trigger output - instruction to output a strobe signal
API_BC_FWI_DJZ Decrement and Jump on Zero - When using non-cyclic major frame

(as specified in ApiCmdBCStart) you can jump to a label in the BC
Instruction Table when the major frame counter is decremented to
zero.

API_BC_FWI_WMFT Wait for next Minor Frame Time slot - instruction to wait until the next
minor frame time slot begins, then continue with the following entry in
the BC Instruction Table

API_BC_FWI_HALT BC Operation Halt - Halt the BC
API_BC_FWI_DELAY Delay - delay the execution of the next entry in the BC Instruction

Table by a user-specified time
API_BC_FWI_CMFT Change Minor Frame Time - instruction to change the minor frame

time "on-the-fly" to a user-specified value.
API_BC_FWI_RESMF Reset Major Frame - instruction to swap between several different

major frames in one BC setup.

– Instruction parameters - parameters required for the Firmware Instruction

Writes - Writes the converted BC Instruction Table to the Instruction List global memory area.

Two other API S/W Library functions can be called in order to read the contents of the Global memory
BC Instruction List including: ApiCmdBCInstrTblGetAddrFromLabel which obtains the address of the
BC Instruction List for a user-specified label, and ApiReadBlockMemData to read the Global Memory’s
BC Instruction List at the address returned by ApiCmdBCInstrTblGetAddrFromLabel.

The following example defines minor/major frames using the BC Instruction Table mode. This sample
code demonstrates the setup of minor and major frames and the starting of the BC using 4 previously

MIL-STD-1553 - V24.18.0 47

BUS CONTROLLER PROGRAMMING

setup transfers with Transfer IDs of 1 through 4. The first minor frame includes 5 instructions; (1) execute
Transfer 1, (2) execute Transfer 2, (3) execute a wait delay of 1 millisecond, (4) execute Transfer 3, (5)
execute Transfer 4. The second minor frame has only one instruction; (1) execute Transfer 1. (Note:
This is the same minor/major frame architecture setup as defined in the example for Standard Framing
mode in Section 6.5.1.)

Define Minor/Major Frames:

TY_API_BC_FW_INSTR i n s t r _ t b l [7] ;
AiUInt32 c t b l [7] ;

/ * Get BC resources by i n i t i a l i z i n g to BC I n s t r u c t i o n Table mode * /
ApiCmdBCInstrTblIni (ulModHandle , 0) ;

/ * Clear BC I n s t r u c t i o n Table s t r u c t u r e * /
ApiCmdBCInstrTblGen (ulModHandle ,0 ,

0 , / / mode=CLEAR
8 , / / # o f e n t r i e s
0L , / / dest_cnt
0L , / / d e s t _ o f f s e t
i n s t r _ t b l , / / i n s t r u c t i o n s ar ray
c t b l , / / the converted tab l e i n f i rmware format
&l i n e ,
&r v a l) ;

/ * Setup BC I n s t r u c t i o n Table * /
i n s t r _ t b l [0] . l a b e l = 0x1111 ; / / Label f o r f i r s t minor frame
i n s t r _ t b l [0] . op = API_BC_FWI_XFER ;
i n s t r _ t b l [0] . par1 = 1; / / T rans fer 1
i n s t r _ t b l [1] . op = API_BC_FWI_XFER ;
i n s t r _ t b l [1] . par1 = 2; / / T rans fer 2
i n s t r _ t b l [2] . op = API_BC_FWI_DELAY ;
i n s t r _ t b l [2] . par1 = 4000; / / 1 ms delay i n 250ns increments
i n s t r _ t b l [3] . op = API_BC_FWI_XFER ;
i n s t r _ t b l [3] . par1 = 3; / / T rans fer 3
i n s t r _ t b l [4] . op = API_BC_FWI_XFER ;
i n s t r _ t b l [4] . par1 = 3; / / T rans fer 4
i n s t r _ t b l [5] . op = API_BC_FWI_WMFT ; / / Wait f o r Next Minor Frame Time S lo t

48 MIL-STD-1553 - V24.18.0

BUS CONTROLLER PROGRAMMING

i n s t r _ t b l [6] . l a b e l = 0x2222 ; / / Label f o r second minor frame
i n s t r _ t b l [6] . op = API_BC_FWI_XFER ;
i n s t r _ t b l [6] . par1 = 1; / / T rans fer 1
i n s t r _ t b l [7] . op = API_BC_FWI_WMFT ; / / Wait f o r Next Minor Frame Time S lo t
I n s t r _ T b l [8] . op = API_BC_FWI_JUMP ; / / Setup t h i s major frame to be c y c l i c
I n s t r _ T b l [8] . par1 = 0x1111 ; / / by jumping back to the f i r s t min frame

/ / Convert and Wri te BC I n s t r u c t i o n Table to memory image i n c t b l
ApiCmdBCInstrTblGen (ulModHandle ,0 ,

3 , / / mode=CONVERT & WRITE
9 , / / # o f e n t r i e s
8 , / / dest_cnt
0L , / / d e s t _ o f f s e t
i n s t r _ t b l , / / i n s t r u c t i o n s ar ray
c t b l , / / the converted tab l e i n f i rmware format
&l i n e , &r v a l) ;

Note:
If you want to setup a cyclic major frame then the last instruction has to be API_BC_FWI_JUMP (back
to the start of the major frame).

6.6 Starting the Bus Controller

The BC can be started after the minor/major frame definition has been performed as defined in Sec-
tion 6.5. The function, ApiCmdBCStart, starts the execution of pre-defined BC transfers/instructions and
defines minor frame timing as defined below:

• Minor Frame Time - the time allotted by the BC for each minor frame transmission. Figure 6.6.0-I
shows how the Minor Frame Time parameter is used by the BC to control the timing of the minor
frames. In essence, the timing starts at the beginning of the minor frame, the minor frame trans-
fers/instructions are executed back-to-back then the BC waits for the Minor Frame Time (specified
by the user) to expire

• Bus Controller Start Mode - Defines the method the BC will use to begin the transmission of the
major/minor frames including one of the modes as defined in the table below. The Autoframing
method, as shown in Figure 6.6.0-II, of inserting minor frames into the major frame is used for
all start modes, with the exception of API_BC_START_EXTERNAL_PULSE. Figure 6.6.0-III and
Figure 6.6.0-IV show two scenarios using an external pulse to frame the minor frames. The first
scenario Figure 6.6.0-III shows how the rising edge of the pulse controls the transmission of the mi-
nor frame. The second scenario adds a wait instruction (using the ApiCmdBCFrameDef function)
as the first instruction the BC executes after the rising edge of the pulse is detected.

MIL-STD-1553 - V24.18.0 49

BUS CONTROLLER PROGRAMMING

Constant Description
API_BC_START_IMMEDIATELY Start BC operation / Transfer execution immediately
API_BC_START_EXT_TRIGGER Start BC operation / Transfer execution by external BC

trigger input
API_BC_START_RT_MODECODE Start BC operation / Transfer execution by RT Modecode

Dynamic Bus Control
API_BC_START_EXTERNAL_PULSE Drive minor framing from external pulse (BC trigger input)
API_BC_START_SETUP Prepare BC Instruction sequence (= Minor and Major

Frame sequence) in the Board Global memory for a fast
start with API_BC_START_FAST.

API_BC_START_FAST Start BC operation / Transfer execution immedi-
ately fast. Note that API_BC_START_SETUP and
API_BC_START_FAST shall be used in conjunction.

API_BC_START_INSTR_TABLE * Start BC operation / Transfer execution with predefined
BC Instruction Table (refer to ApiCmdBCInstrTblGen)

API_BC_START_CONTINUE_ON_BC_HALT * Continue BC operation (only applicable with predefined
BC Instruction Table, BC operation must be already
started with API_BC_START_INSTR_TABLE)

Note:
Constants marked with * are applicable to BC Intruction Table Mode. All other modes are applicable for Standard
Framing Mode.

• Count of times the major frames will execute. The user can specify 0 for in order to continuously
execute the major frame (in Standard Framing mode only), or the user can specify a major frame
count to indicate the number of times the major frame will be transmitted.

Figure 6.6.0-I: Minor Frame Timing Control Diagram

50 MIL-STD-1553 - V24.18.0

BUS CONTROLLER PROGRAMMING

Figure 6.6.0-II: Minor Frames within the Major Frame using Autoframing

Figure 6.6.0-III: Minor Frames within the Major Frame using External Pulse

MIL-STD-1553 - V24.18.0 51

BUS CONTROLLER PROGRAMMING

Figure 6.6.0-IV: Minor Frames within the Major Frame using External Pulse and a Wait Instruction

Following are three examples of starting the BC; one for Standard Framing mode, and the other two for
BC Instruction Table mode. In each example, the minor frame time will be set to last 10 milliseconds.

Define Minor Frame Timing and Start the Bus Controller (for Standard Framing Mode)

f rame_cnt = 0 ; / / 0 = c y c l i c or any number o f major frame execut ions
frame_time = 10; / / Minor Frame Time i n m i l l i seconds
ApiCmdBCStart (ulModHandle ,0 ,

API_BC_START_IMMEDIATELY , / / S t a r t standard framing immediate ly
frame_cnt , / / c y c l i c
frame_time , / / frame t ime i n ms
0 , / / s t a r t address n / a i n t h i s mode
&ul_MajFrameAddr , / / ou tput value
aul_MinFrameAddr) ; / / ou tput value

When using BC Instruction Table mode, only the API_BC_START_INST_TABLE or
API_BC_START_CONTINUE_ON_BC start modes are applicable. In the example below, the execution
of the BC Instruction Table will start at the beginning of the table.

Define Minor Frame Timing and Start the Bus Controller (for BC Instruction Table Mode)

f rame_cnt = 0 ; / / Cab be used f o r BC I n s t r u c t i o n Table mode API_BC_FWI_DJZ
frame_time = 10; / / Minor Frame Time i n m i l l i seconds
ApiCmdBCStart (ulModHandle ,0 ,

API_BC_START_INSTR_TABLE , / / S t a r t i n s t r u c t i o n tab l e mode
frame_cnt , / / N/A*
frame_time , / / frame t ime i n ms

52 MIL-STD-1553 - V24.18.0

BUS CONTROLLER PROGRAMMING

0 , / / BC I n s t r Tbl s t a r t address
&ul_MajFrameAddr , / / ou tput value
aul_MinFrameAddr) ; / / ou tput value

Note:
To create cyclic execution in BC Instruction Table mode, the programmer must include the
API_BC_FWI_JUMP instruction at the end of the BC Instruction Table major frame using the ApiCmd-
BCInstrTblGen function. The API_BC_FWI_DJZ instruction can be used in combintion with frame_cnt
to implement a cyclic framing that stops after a given number of repetitions.

To start execution from a different instruction in the BC Instruction, the instruction must have a label
defined. You would then need to get the address of the label (using ApiCmdBCInstrTblGetAddrFromLa-
bel), and use that address in the ApiCmdBCStart function call as shown below. (This example uses the
BC Instruction Table minor frame/major frame definition example shown in Section 6.5.2.)

Define Minor Frame Timing and Start the Bus Controller (for BC Instruction Table Mode with
execution start at a label other than the first label in the table.)

frame_time = 10; / * Minor Frame Time i n m i l l i seconds * /
ApiCmdBCInstrTblGetAddrFromLabel (ulModHandle , 0 ,

0x2222 / / l a b e l f o r 2nd minor frame ,
8 / / # o f e n t r i e s * / ,
i n s t r _ t b l ,
&saddr , / / ou tput address o f l a b e l
& l i n e) ;

ApiCmdBCStart (ulModHandle ,0 ,
API_BC_START_INSTR_TABLE , / / S t a r t i n i n s t r u c t i o n tab l e mode
0 , / / f rame_cnt N/A
frame_time , / / frame t ime i n ms
saddr , / / address o f l a b l e 0x2222
&ul_MajFrameAddr , / / ou tput value
aul_MinFrameAddr) ; / / ou tput value

6.7 Acyclic 1553 Transfers

Acyclic 1553 transfers may be required in your application if there are certain conditions under which
you may want to insert a sequence of transfer(s) "on the fly" (or at a pre-defined time) into the major
frame. The new acyclic frame containing the sequence of transfers will be inserted into the major frame
by the BC one time upon the completion of the BC transfer/instruction currently being executed. In
order to prepare for the "on the fly" insertion, you must first have the transfers defined as described in
Section 6.2. The following additional functions must be used including:

• ApiCmdBCAcycPrep - Defines the properties of the acyclic "on-the-fly" BC transfers/instructions
to be inserted into the BC framing sequence. This instruction is basically identical to the ApiCmd-
BCFrameDef without the definition of a Minor Frame ID (since it will be sent "on the fly").

MIL-STD-1553 - V24.18.0 53

BUS CONTROLLER PROGRAMMING

• ApiCmdBCAcycSend - Starts the insertion of the acyclic "on-the-fly" transfers using one of the
following methods:

– Insert immediately into the BC framing sequence upon transmission completion of the current
BC transfer/instruction

– Insert at a user-specified-time *

– Insert after the current normal minor frame is completed and before the next normal minor
frame starts. *

Note:
* Check Appendix B of the Reference Manual for a detailed overview of functions supported for different
devices.

Examples of acyclic transfer programming using the BC functions described above can be found in
the ls_acyclic_sample.c BSP sample. The following sample code demonstrates the insertion of two
transfers immediately upon request using two previously setup transfers with Transfer IDs of 1 and 2.
Once normal BC operations have started, the acyclic transfer can be sent.

Define the transfers that will be sent in the acyclic frame. A maximum of 127 Transfers can be
sent in one Acyclic Frame.

/ / Prepare Acyc l i c Trans fer sequence
api_bc_acyc . cn t = 2 ; / / # o f i n s t r u c t i o n s i n frame
api_bc_acyc . x id [0] = 1 ; / / T rans fer 1
api_bc_acyc . i n s t r [0] = API_BC_INSTR_TRANSFER ; / / I n s t r u c t i o n type t r a n s f e r
api_bc_acyc . x id [1] = 2 ; / / T rans fer 2
api_bc_acyc . i n s t r [1] = API_BC_INSTR_TRANSFER ; / / I n s t r u c t i o n type t r a n s f e r
ApiCmdBCAcycPrep (ulModHandle ,0 , &api_bc_acyc) ;

***Wait until the BC has started execution ***

Send the Acyclic Transfer

ApiCmdBCAcycSend (ulModHandle ,0 , API_BC_ACYC_SEND_IMMEDIATELY , 0 , 0) ;

Note:
Acyclic transfers can be performed when using either the Standard Framing mode or the BC Instruction
Table mode for minor/major frame definition. The function returns before all acyclic data has been sent!

6.8 BC Interrupt Programming

As introduced in Section 6.3.1, the BC is capable of producing interrupts upon the occurrence of certain
events. Interrupt Handler(s) must be created to process the interrupts which occur after the BC has been
started and an interrupt occurs. Some possible BC Interrupt Handler functions may include: (1) refilling
the message buffer at the end-of-transfer interrupt, and/or (2) reporting transfer errors on a transfer

54 MIL-STD-1553 - V24.18.0

BUS CONTROLLER PROGRAMMING

error interrupt. The functions required to setup BC interrupts and interrupt handler execution include the
Library Administration and Initialization functions as defined in Section 4.9, and one or more of the BC
function calls (as your application requires) defined as follows:

• ApiCmdBCXferDef - Setup the BC to perform an interrupt on any of the following conditions:

– Interrupt on End of Transfer

– Interrupt on Transfer Error

– Interrupt on Status Word exception

• ApiCmdBCFrameDef, ApiCmdBCAcycPrep, or ApiCmdBCInstrTblGen - Within the sequence
of transfer instructions defined within a minor frame, you can setup an instruction to generate an
interrupt.

– Interrupt upon occurrence of a transfer instruction defined as BC Skip instruction with interrupt
enabled

• ApiCmdBCStart – when setup for non-cyclic major frame transmission

– Interrupt after the user-specified count of major frames have been transmitted and BC is
halted.

Once you have configured the BC to generate an interrupt and you have created an Interrupt Handler
function to handle the interrupt, then start the BC using the ApiCmdBCStart function to start data flow.
If the BC determines that an interrupt has occurred, the BC will initiate a call to the Interrupt Handler
function and provide information about the interrupt as defined in the ApiInstIntHandler handler definition
in the associated Reference Manual.

The following sub-sections describe how to setup the BC transfer to create an interrupt.

6.8.1 How to Setup the 1553 Transfer to Cause an Interrupt

As described above, the BC can be setup to interrupt during a transfer on one of the following conditions:

• Interrupt on End of Transfer - an interrupt will be logged to the interrupt loglist when the transfer is
complete (including status word/frame)

• Interrupt on Transfer Error - an interrupt will be logged to the interrupt loglist when a transfer error
is detected

• Interrupt on Status Word exception - an interrupt will be logged to the interrupt loglist when the
Staus Word received by the BC AND’d with the Status Word Exception Mask indicates a non-zero
condition. When configuring your transfer to interrupt on a Status Word Exception, you must set
the Status Word Exception Mask to indicate the Status Word Exception the BC is to look for. See
Figure 6.8.1-I for details.

The following table shows some examples on how to enable different interrupt conditions within the
transfer descriptor. In the Status Word Exception Interrupt Transfer defined, the Status Word Exception
Mask is setup to look for a "Busy" condition in the Status Word:

MIL-STD-1553 - V24.18.0 55

BUS CONTROLLER PROGRAMMING

BC Transfer Definition Parameters defined using ApiCmdBCXferDef
Transfer
structure

End of Transfer Interrupt Transfer Error Interrupt Status Word Exception Interrupt

tic API_BC_TIC_ON_XFER_END API_BC_TIC_INT_ON_XFER_ERR API_BC_TIC_ON_STATUS_EXCEPT
sxwm 0x0008 (See Figure 6.8.1-I)
rsp API_BC_RSP_AUTOMATIC

Figure 6.8.1-I: Status Word Exception Mask

Section 5.2.1 contains an example on how to program the BC interrupt to reload the transmit buffer data.

6.8.2 How to Setup the Minor Frame Transfer Sequence to Cause an Interrupt

Although used less frequently, the BC can be setup to generate an interrupt between transfers in a minor
frame or acyclic frame. This can be accomplished using the functions ApiCmdBCFrameDef (for minor
frame transfer sequence definition in Standard Framing mode), ApiCmdBCInstrTblGen (for minor frame
transfer sequence definition in BC Instruction Table mode), and ApiCmdBCAcycPrep (for acyclic frame
transfer sequence definition).

• For ApiCmdBCFrameDef and ApiCmdBCAcycPrep, the two function parameters associated with
this setup include the transfer instruction, "inst", and the transfer ID "xid". These two parameters
should be setup as follows:

– inst - set to the Skip Instruction (inst = API_BC_INSTR_SKIP)

– xid - set the Skip Count to 1 (which basically is interpreted as a "No operation" instruction)
and enable the interrupt.

• For ApiCmdBCInstrTblGen the two function parameters associated with this setup include the
transfer instruction, "op" and the instruction parameter "par2". These two parameters should be
setup as follows:

– op - set to the Skip Instruction (inst = API_BC_FWI_SKIP)

– par2 - set INT = 1 to enable the interrupt.

Note:
Interrupts generated by the skip instruction are reported as API_INT_BC_BRANCH type in the interrupt
callback handler.

56 MIL-STD-1553 - V24.18.0

BUS CONTROLLER PROGRAMMING

6.9 Status Word Exception Handling

The BC can be programmed to monitor bits in the Status word received from an RT SA/Mode code. If
any of the Status word bits (programmed to be monitored) are set in the Status word received from the
RT SA/Mode code, the BC can also be programmed to halt the BC or generate an interrupt such that a
user-developed interrupt handler can provide further processing.

There is one function associated with programming the BC to handle Status word Exceptions: ApiCmd-
BCXferDef. (Handling of the Service Request in the RT Status word is a special case and is dis-
cussed in Section 6.9.1) As defined in Section 6.2, the ApiCmdBCXferDef BC function will utilize the
TY_API_BC_XFER structure to define the properties of a 1553 transfer. Information contained in this
structure is not only used to create the Command word, Data word(s)/Mode Code, it is also used to de-
fine the process for handling the Status word generated by the RT(s) SA/Mode code associated with the
transfer. The TY_API_BC_XFER structure parameters associated with Status word exception handling
are shown in the following table.

BC Transfer Definition Parameters defined using ApiCmdBCXferDef
Transfer
structure

Definition

tic Transfer Interrupt Control - setup for generation of a BC interrupt upon end of transfer,
transfer error or status word exception (See Section 6.8)

hlt Halt - setup to halt the BC upon end of transfer, transfer error, status word exception or any
interrupt

sxh Status Word exception handling - defines the process to execute upon occurrence of a
Status Word Service Request

sxwm Status Word Exception Mask - defines the bits in the status word received from the RT that
will be checked by the BC

rsp Response - defines the response the BC expects from the RT such as basic response
as defined by ApiCmdDefMilbusProtocol, no status word 1 expected, or no status word 2
expected.

The Status Word Exception Mask (swxm) is used to mask (AND mask) the status word response of the
RT SA/Mode code. The Status Word Exception Mask is used for both responses received by the BC
for RT-to-RT transfers. If the result of the mask process is not zero, an interrupt is asserted, if enabled
via the tic parameter and/or the BC is halted, if enabled via the hlt parameter. Unexpected responses (a
non-zero result of the mask process) are not counted as errors and cause no Error Interrupt or Retry.

The table below provides some examples of how to setup the parameters for ApiCmdBCXferDef for
Status word exception handling. Note that in each case the Expected Response control (rsp) is setup to
check both Status Word 1 and Status Word 2 (RT-RT transfers only). This parameter, however, can be
modified to check only Status word 1 or only Status word 2. In the following table, three examples are
setup. The first example shows the parameter setup for configuring the BC transfer such that the BC will
check the Message Error bit (bit 10) in the Status word and interrupt if that bit is set in the Status word
received by the BC. The second example configures the BC to halt the BC if the Instrumentation error
bit (bit 9) is set in the Status word. The third example configures the BC transfer such that the BC will
interrupt if either the Message Error bit (bit 10) or the Busy bit (bit 3) is set in the Status word

MIL-STD-1553 - V24.18.0 57

BUS CONTROLLER PROGRAMMING

BC Transfer Definition Parameters defined using ApiCmdBCXferDef
Transfer
struc-
ture

Interrupt on Message Error in RT
Status Word

Halt the BC on Instrumentation
Error in RT Status Word

Interrupt on Busy set or Message
Error in RT Status Word

hlt API_BC_HLT_NO_HALT API_BC_HALT_ON_STAT_EXCEPT API_BC_HLT_NO_HALT
tic API_BC_TIC_ON_STATUS_EXCEPT API_BC_TIC_NO_INT API_BC_TIC_ON_STATUS_EXCEPT
sxwm 0x0400 (See Figure 6.8.1-I) 0x0200 (See Figure 6.8.1-I) 0x0408 (See Figure 6.8.1-I)
rsp API_BC_RSP_AUTOMATIC API_BC_RSP_AUTOMATIC API_BC_RSP_AUTOMATIC

6.9.1 RT Service Request Processing

The BC can be programmed to transmit a Vector Word Mode code (Mode code 16) when the Service
Request bit in the RT Status word (Status Word 1 only) is set. Setup required for this process to occur
includes the following:

• ApiCmdBCIni - Enable Service Request / Vector Word Mode Control (svrq)

• ApiCmdBCXferDef - Setup the Status word exception mask (swxm) with the Service Request bit
set (bit 8). Configure the Status Word Exception Service Request handling control parameter (sxh
= 1) for the BC to generate automatic Transmit Vector Word Mode code (16) when the Service
Request bit is set.

As response on the Mode code, the RT transmits a Vector Word to the BC, which is interpreted and
handled by the BC following the description given in the ’AVS Databus Usage Report R-J-403-V-1209
Par7.2’. The format of the Vector Word expected to be sent by the RT after receipt of the Transmit Vector
Word Mode code is shown in the following bit field.

0123456789101112131415

ID RT SA/MID

• ID [Bit 15 - 12] Vector Word ID

• RT [Bit 11 - 7] RT-Address

• SA/MID [Bit 6 - 0] Subaddress / MID.

The Vector Word IDs and BC automatic response is shown in the following table. In order for the BC
to respond as requested by the RT’s Vector Word, a BC transfer must be setup as defined in the last
column of next Table.

BC Response to RT Vector Word
Vector Word ID BC Response BC Setup Required
Request Sin-
gle RX/TX
(1000/1001)

A pre-defined transfer is executed once imme-
diately (acyclic) after receipt and decoding of
the vector word.

ApiCmdBCXferDef - setup a vector word
driven transfer for this request with parameter
sxh = 1.

Continued on next page

58 MIL-STD-1553 - V24.18.0

BUS CONTROLLER PROGRAMMING

Continued from previous page
Vector Word ID BC Response BC Setup Required
Request Mul-
tiple RX/TX
(1010/1011)

A pre-defined transfer is appending to the end
of the current BC minor frame (Cyclic execu-
tion until disabled).

ApiCmdBCXferDef - setup a vector word
driven transfer for this request with parameter
sxh = 2

Delete RX/TX
(1100/1101)

The related BC transaction is disabled by
deleting it from the end of the related BC minor
frame. Re-enabling requires receipt of the cor-
responding vector word code (Request Mul-
tiple RX/TX 1010/1011). Only BC transfers
which have been enabled by a previous ’Re-
quest Multiple RX/TX’ vector word can be dis-
abled.

Note:
Only BC-RT and RT-BC transfer types can be defined to be ’vector word driven transactions’.

The BC function ApiCmdBCSrvReqVecStatus can be used to obtain the status of the number of Service
Requests issued by the RT and to obtain the Last Vector Word received from the RT.

MIL-STD-1553 - V24.18.0 59

REMOTE TERMINAL PROGRAMMING

7 Remote Terminal Programming

The remote terminal (RT) is a device designed to interface various subsystems with the 1553 data bus.
The interface device may be embedded within the subsystem itself, or may be an external interface to tie
a non-1553 compatible device to the bus. As a function of the interface requirement, the RT receives and
decodes commands from the BC, detects any errors and reacts to those errors. The RT must be able
to properly handle both protocol errors (missing data, extra words, etc.) and electrical errors (waveform
distortion, rise time violations, etc). RTs are the largest segment of bus components. Up to 31 remote
terminals can be connected to the data bus and each remote terminal can have 31 subadresses. The
remote terminal shall not speak unless spoken to first by the bus controller and specifically commanded
to transmit. The commands may include data or request for data (including status) from RTs. Command
word, Data word and Status word formats are shown in section 2.

If your application requires the simulation of an RT, this section will provide you with the understanding
of the RT programming functions required for use in your application. Programming the RT may require
the use of more than just the RT functions. Also needed may be the Buffer and FIFO functions. This
section will discuss some of the typical scenarios a programmer would encounter that would require the
use of the Buffer, FIFO and RT functions. These scenarios include:

• Initializing the RT

• Defining RT Subaddresses

– RT transfers using single buffers

– RT transfers using multiple buffers

– RT transfers using FIFOs

– RT transfers with dynamic data

• RT transfers with error injection

– Into Status/Data word

– Via Status Word Response

• RT Interrupt programming

7.1 Initializing the RT

Initialization of the RT must be the first RT setup function call issued. This function call, ApiCmdRTIni,
required for each RT to be initialized, will perform setup of the RT global transfer and Status word
response characteristics for a specified RT including:

• RT Address - Address (0 - 31) of the simulated RT

• RT Operation Control - This control parameter configures the RT for one of the following two
operational modes:

– RT Simulation - In this mode the RT will behave in the manner you have set it up to behave.

60 MIL-STD-1553 - V24.18.0

REMOTE TERMINAL PROGRAMMING

– RT Mailbox Monitoring - In this mode, the RT will capture RT message data on a subaddress
level without affecting bus traffic (i.e. without generating a response on the bus). This mode
is used to monitor non-simulated "external" RT’s.

• Response Time - defines the default value defining the time it will take for the RT to respond
with a status word. As shown in Figure 2.0.0-III, the response time is the time between the BC
Command/Data word and the RT Status word. This value can be programmed from 4.0µs to
63.75µs in 0.25µs steps.

Note:
There is an additional Response Time configuration function, ApiCmdRTRespTime, that allows you to
change the defaulted response time after basic initialization has been performed.

Note:
Not all boards support response times down to 4.0 µs. Check the Reference Manual for restrictions on
various board types.

• RT Next Status Word - defines the value of the status word that the RT will respond with after the
BC Command/Data word is received. See figure 2.0.0-II for a description of the status word.

The following code example uses API S/W Library constants to initialize the RTs, 1, and 2 for Simulation
enabled, Response time default set to 8µs, and the Next Status word is setup to disable any errors or
service requests. (The only bits that are set in the Next Status word indicate the RT address.)

/ / Remote Terminal I n i t i a l i z a t i o n Commands
ApiCmdRTIni (ulModHandle , 0 , 1 / *RT* / , API_RT_ENABLE_SIMULATION , 0 , 8 , 0x0800) ;
ApiCmdRTIni (ulModHandle , 0 , 2 / *RT* / , API_RT_ENABLE_SIMULATION , 0 , 8 , 0x1000) ;

Note:
Default operation of the RT is to respond to Command Words from both the primary and secondary
busses.

7.2 Defining RT Subaddress/Mode Code for Communication with the BC

For MIL-STD-1553 BC-to-RT, RT-to-RT and RT-to-BC transfers, the user must first assign an RT Buffer
Header ID to the RT to enable the processor to identify the location of status and event data generated for
each transfer. The status and event data queues associated with the assigned Buffer Header will contain
the command and status information required to process the 1553 transfer as well as the pointers to the
buffers used to transfer the 1553 Data Words.

The message buffers will be assigned to transmit/receive the Data words within the 1553 transfer. If
there are no Data words within the 1553 transfer, a message buffer will still need to be assigned. (How-
ever, the API S/W Library does not prevent the user from using the same buffers in more than one
transfer, therefore, the same message buffer can be assigned for transfers that do not require the trans-
mission/reception of Data word(s)). Each message buffer has a unique ID which must be assigned by
the user. See section 5.1 for details about the buffer handling.

In addition, the characteristics of the RT SA must be defined.

MIL-STD-1553 - V24.18.0 61

REMOTE TERMINAL PROGRAMMING

To configure an RT to respond to each type of transfer will require the use of the following RT function
calls:

• ApiCmdRTBHDef - this RT function will define an RT Buffer Header structure. As shown in Fig-
ure 5.1.0-I, the RT Buffer Header structure enables the processor to identify the location of the
message buffers used and status and event data generated for each RT message transfer. The
RT Buffer Header information to be setup by this function includes the following:

– RT Buffer Header ID – the ID of the RT Buffer Header structure.

– Message Buffer ID - the ID of the first buffer in the Global RAM message buffer pool to be
used for the transfer of the Data words. A Message Buffer ID of 20 would indicate that the
20th buffer in the Global RAM Buffer Pool will be used. See Figure 5.1.0-I for a diagram of
the structure of these message buffers.

– Buffer Queue Size - the number of Global RAM message buffers to be used for the transfer
of the Data words. One or more buffers can be used for the transfer. You will always need
to assign at least one message buffer from the Global RAM Buffer Pool for your transfer. For
example, assigning API_QUEUE_SIZE_8 for this transfer indicates that 8 contiguous buffers
would be used. Using the example of Message Buffer ID of 20 above, and a queue size of 8,
message buffers 20 - 27 would be used for the transfer.

– Buffer Queue Mode - specifies the order in which multiple buffers as specified in the Buffer
Queue Size, will be filled. In most cases, users will choose to store the Data words into the
Message Buffers in a cyclic fashion (API_BQM_CYCLIC).

– Data Buffer Store Mode - will allow the user to indicate the actions to be taken in case of
error in the transmission or reception of Data words such as whether to keep transmitting the
same message buffer at transfer error, or continue with the next buffer in the queue for the
next transmission.

Note:
Buffer Queue Size, Buffer Queue Mode , Data Buffer Store Mode, and Buffer Size and the Current
Buffer Index can be modified "on the fly" (i.e. after the RT has been started) using the Buffer function
call ApiBHModify.

• ApiCmdRTSACon - this function defines the subaddresses to be simulated and the mode codes
the RT is required to respond to. This enables the RT to be able to properly respond to the
Command/Action word with a user-defined Status word and/or Data word Transmission. For each
of the RT’s Subaddresses or Mode codes simulated by your application you will need to use this
function call. All RT characteristics defined by this function are associated with the Buffer Header
ID identified with ApiCmdRTBHDef. This function provides

– Subaddress Type – allows the user to define whether the Subaddress specifed by the user
(sa) (0 – 31) is enabling response functionality for a Mode code or is enabling a subaddress
for data transfers.

– Subaddress Control - provides a method to disable the individual SA, and setup interrupt
processing including whether the RT SA will interrupt after the transfer is complete or interrupt
on any transfer error.

– Buffer Locations - It also associates the RT SA/Mode code to a pre-defined RT Buffer
Header ID (see ApiCmdRTBHDef description above) such that the buffer location for all action
(Data word receive/transmit), and status for that RT SA/Mode code is known.

62 MIL-STD-1553 - V24.18.0

REMOTE TERMINAL PROGRAMMING

– Status Word Response - provides the capability for a unique Status Word Response to be
sent for each individual RT SA’s or Mode codes. The Status Word response is defined by
masking in any desired Status word bits to the Next Status Word defined using the global RT
function, ApiCmdRTIni.

The following code is an example of setting up the RT for a BC-to-RT transfer to RT1, SA1 with a data
word count of 4. The IDs assigned to this transfer include:

RT Assignments
RT Buffer Header ID = 1

Buffer ID = 10

This setup performed in this example will configure RT1, SA1 to receive Data words into a message
buffer (buf_id = 10). With the ApiCmdRTBHDef function, the Queue size is set to 1, such that the same
buffer will be used each time the RT receives Data words from the BC. Using the ApiCmdRTSACon
function, RT1 Receive SA1 is associated with RT Header ID = 1, the subaddress is enabled with no
interrupt (API_RT_ENABLE_SA), the Status Word Mask control and mask is set to logically "OR" the
value of 0 with the Next Status word specified in the ApiCmdRTIni function. (In essence, the RT1
Receive SA1 will use the default Next Status word instead of defining a unique Status word.)

r t _ h i d = 1; bu f_ id = 10;

ApiCmdRTBHDef (ulModHandle , 0 ,
r t _h id ,
buf_ id ,
0 , 0 ,
API_QUEUE_SIZE_1 ,
0 , 0 , 0 , 0 , 0 ,
&api_r t_bh_desc) ;

ApiCmdRTSACon(ulModHandle , 0 ,
1 / *RT* / , 1 / *SA* / ,
r t _ h i d / * HID * / ,
API_RT_TYPE_RECEIVE_SA ,
API_RT_ENABLE_SA ,
0 / * rmod * / ,
API_RT_SWM_OR,
0 / *swm* /) ;

The following table provides examples of how to change the parameters in the ApiCmdRTSACon func-
tion to setup different types of RT transfers. The BSP sample folder contains many examples of setting
up multiple RTs as well.

ApiCmdRTSACon RT SA/MC SA Type
Broadcast Xfer with word count of 2 31 1 - 30 RECEIVE_SA
RT2 SA3 to BC Xfer with any word count 2 3 TRANSMIT_SA
Mode code 17 Xfer to RT05 SA0 (synchronize) 5 17 RECEIVE_MODECODE

MIL-STD-1553 - V24.18.0 63

REMOTE TERMINAL PROGRAMMING

Note:
If you want to setup the RT such that it will detect illegal Mode codes, you will need to configure the RT
using the ApiCmdRTSACon function for every illegal Mode code and set the RT’s Status word to indicate
Message Error. See Section 7.3.2

7.2.1 RT Transmit/Receive Message Data Word Generation/Processing

Now that you are familiar with the method used to define the characteristics of the RT transfers generated
by a simulated RT, we can now discuss how to setup and place data into the message buffers assigned
for RT Data word transmissions for RT-to-BC and RT-to-RT type transfers. Also described will be how
to setup and obtain data from the message buffers used for RT Data word reception for BC-to-RT and
RT-to-RT type transfers.

7.2.2 For RT-to-BC and RT-to-RT Type Transfers (RT Transmit)

The API S/W Library provides several methods to insert real-time/dynamic/fixed user data into the Global
RAM 1553 Message Buffers used by the transmitting side of the RT transfer and specified in the ApiCm-
dRTBHDef function described in the previous section. Regardless of how many buffers have been
allocated in the Global RAM message buffer pool for the transmission of RT data, any of the following
methods can be used to insert Data words into the Message Buffer(s). Following is a summary of the
different scenarios you may choose:

• Insert fixed data into the Message Buffer(s) using the ApiCmdBufDef Buffer function.

• Insert dynamically updating data into the Message Buffer(s) using the ApiCmdRTDytagDef func-
tion. This function provides dynamically changing data words within the transmit message buffer
using one of the following dynamic data generation modes/functions:

– Function mode: provides for up to two dynamic data words per transfer using any combina-
tion of the following functions as pictured in Figure 6.3.1-I.

1. Positive Ramp

2. Negative Ramp

3. Positive Triangle

4. Negative Triangle

5. Transmit a Data word from a different Message Buffer

– Tagging mode: provides for up to four dynamic data words per transfer using Sawtooth
Tagging. The Sawtooth Tagging mode provides an incrementer by 1, which is performed on
the user-specified location with each execution of the associated RT transfer. The location
to be incremented can be setup with an initial value to be incremented each transfer, or the
existing value can be incremented. The options are to increment any combination of the
following byte or words:

1. 16-Bit Sawtooth

2. 8-Bit Sawtooth LSB (lower byte of word)

3. 8-Bit Sawtooth MSB (higher byte of word)

64 MIL-STD-1553 - V24.18.0

REMOTE TERMINAL PROGRAMMING

• Assign a FIFO (ASP Shared RAM) to the transfer. (Each FIFO consists of 128 32-word buffers.
There are 32 FIFOs.) Pre-fill the FIFO with application data, the data transmitted in the Global
RAM message transmit buffer will be obtained from the FIFO. Re-fill the FIFO as needed. (See
Figure 6.3.1-II)

• Assign Dataset buffers (ASP Shared RAM) to the transfer. (There are 4095 32-word buffers in the
Dataset Buffer pool.) Pre-fill the Dataset buffer(s) with application data, the data transmitted in the
Global RAM message transmit buffer will be obtained from the Dataset buffers. Refill the Dataset
buffers as needed.

• Create an interrupt handler routine and setup the interrupt control defined for the transfer to inter-
rupt on end-of-transfer. Upon end-of transfer interrupt, the interrupt handler will be called at which
time the buffer can be filled with new data. See Section 7.4 for more information on RT Interrupt
handling.

The BC, Buffer, and/or FIFO function calls required for each scenario described above are summarized
in the following table.

Data Source Functions Used BSP Examples
Fixed Data

1. ApiCmdRTBHDef
2. ApiCmdRTSACon
3. ApiCmdBufDef

LS BC RT BM Sample

With Dynamic
Data Words 1. ApiCmdRTBHDef

2. ApiCmdRTSACon
3. ApiCmdBufDef to setup non-dynamic data
4. ApiCmdRTDytagDef to setup 1-4 dynamic data words

Ls Dynamic Data Sample

Using FIFOs
1. ApiCmdRTBHDef
2. ApiCmdRTSACon
3. ApiCmdFifoIni to initialize the FIFO
4. ApiCmdRTSAAssignFifo to assign the FIFO to the transfer
5. ApiCmdFifoReadStatus to determine how much FIFO data to

reload.
6. ApiCmdFifoWrite to fill the FIFO with data

Ls FIFO Sample

With Dynamic
Dataset Buffers 1. ApiCmdRTBHDef

2. ApiCmdRTSACon
3. ApiCmdRamWriteDataset to fill the dataset buffers with data to

be used in the message buffers
4. ApiCmdSystagDef to assign the Dataset buffers to the transfer

Ls Dynamic Data Sample

7.2.3 For BC-to-RT and RT-to-RT Type Transfers (RT Receive)

Before the RT receives the Data words from the BC or an RT, as part of the setup process, you may
choose to clear your receive buffer to avoid any Data word transmission confusion. The receive buffers

MIL-STD-1553 - V24.18.0 65

REMOTE TERMINAL PROGRAMMING

can be cleared before use by using the ApiCmdBufDef function.

After the RT has received Data words from the BC or an RT, software will need to be added to process
the data. Processing data received by the RT can be accomplished in one of two ways: polling at pre-
defined intervals to examine the RT data, or setting up the transfer to interrupt at end-of-transfer. To
accomplish the interrupt on end-of-transfer method of processing the data, an interrupt handler routine
must also be developed to handle the interrupt which will occur after all Data words have been received.
Upon end-of transfer interrupt, the interrupt handler will be called at which time the buffer can be read
and processed as required by the application. Interrupt handling is discussed further in Section 7.4.

7.2.4 RT Transmit/Receive Mode Code Generation/Processing

The RT can be programmed to respond to any Mode code command including the reserved Mode codes.
As discussed in Section 7.2, enabling or disabling Mode codes is achieved using the ApiCmdRTSACon
function. This function will allow the RT to process up to 32 receive and 32 transmit Mode codes.

Note:
No difference is made between received Mode code commands using the subaddress 0 or 31 if the RT
operates in MIL-STD-1553B protocol mode. If the RT operates in MIL-STD-1553A protocol mode, only
Subaddress zero is used for received Mode Commands.

If your application requires that the RT be capable of processing Mode codes, this section will provide
further detail into this process. If the RT operates in the MIL-STD-1553B protocol mode, special Mode
code handling is provided for the Mode codes as follows:

• Transmit Status Word (00010) - The Last Status word sent for each simulated RT is maintained
by the onboard RT interface software. If a simulated RT is setup to receive this Mode code using
the ApiCmdRTSACon function the RT interface will automatically send the Last Status word for the
specific RT upon receipt of this Mode code. If the last transfer was a Broadcast transfer, the RT
interface will set the "Broadcast Received" bit in the Status word response.

• Transmit Last Command Word (10010) - The Last Status word sent for each simulated RT is
maintained by the onboard RT interface software. In addition, the Last Command word received
by each simulated RT is maintained by the onboard RT interface software. If the simulated RT is
setup to receive this Mode code using the ApiCmdRTSACon function the RT interface will auto-
matically send the specific RTs Last Status word followed by a single Data word containing the
Last Command word upon receipt of this Mode code. If the last transfer was a Broadcast transfer,
the RT interface will set the "Broadcast Received" bit in the Status Word response and fetch the
Last Command word from RT31 (the Broadcast RT).

• Transmitter Shutdown (00100) - If the simulated RT is setup to receive this Mode code using the
ApiCmdRTSACon function, then upon receipt of this Mode code the RT interface will automatically
disable the transmission on the alternate Bus for this specific RT. If this Mode code is broadcasted
(with RT31 setup to receive this Mode code), the RT interface will disable the transmission on the
alternate Bus for all simulated RTs.

• Override Transmitter Shutdown (00101) - If the simulated RT is setup to receive this Mode
code using the ApiCmdRTSACon function, then upon receipt of this Mode code the RT interface
will automatically enable the transmission on the alternate Bus for this specific RT. If this Mode

66 MIL-STD-1553 - V24.18.0

REMOTE TERMINAL PROGRAMMING

code is broadcasted (with RT31 setup to receive this Mode code), the RT interface will enable the
transmission on the alternate Bus for all simulated RTs.

• Reset Remote Terminal (01000) - If the simulated RT is setup to receive this Mode code using the
ApiCmdRTSACon function, then upon receipt of this Mode code the RT interface will automatically
enable the transmission on both Busses for this specific RT. If this Mode code is broadcasted
(with RT31 setup to receive this Mode code), the RT interface will enable the transmission on both
Busses for all simulated RTs.

Note:
The special Mode code handling described above is not provided when the RT is operating in Mailbox
Monitoring mode.

For all other Mode codes not automatically processed by the RT interface, yet are still required for pro-
cessing by your application, the application developer will need to configure the simulated RT to receive
the required Mode code and generate an interrupt upon transfer. This setup can be accomplished using
the ApiCmdRTSACon function as described in Section 7.2. The user-developed interrupt service routine
can be called to process the Mode code for the simulated RT. See Section 7.4 for further information
regarding RT Interrupt Handling.

The following table provides a list of the Mode codes defined in MIL-STD-1553B. The codes shaded are
codes which are simulated in the AIM 1553 module’s RT interface if the RT operates in the MIL-STD-
1553B protocol mode.

T/R Bit Mode Code Function Data Word Broadcast
1 00000 Dynamic Bus Control N N
1 00001 Synchronize N Y
1 00010 Transmit Status Word N N
1 00011 Initiate Self Test N Y
1 00100 Transmitter Shutdown N Y
1 00101 Override Transmitter Shutdown N Y
1 00110 Inhibit Terminal Flag Bit N Y
1 00111 Override Inhibit Terminal Flag Bit N Y
1 01000 Reset RT N Y
1 01001 Reserved N TBD
...
1 01111 Reserved N TBD
1 10000 Transmit Vector Word Y N
0 10001 Synchronize with Data Y Y
1 10010 Transmit Last Command Y N
1 10011 Transmit BIT Word Y N
0 10100 Selected Transmitter Shutdown Y Y
0 10101 Override Selected Transmitter Shut-

down
Y Y

TBD 10110 Reserved Y TBD
...
TBD 11111 Reserved Y TBD

MIL-STD-1553 - V24.18.0 67

REMOTE TERMINAL PROGRAMMING

7.2.5 RT Receive Broadcast Message Processing

To implement the capability for your simulated RT to receive Broadcast messages you will need to setup
RT31 to receive application required Mode codes and/or Data Broadcast messages using the functions
discussed in Section 7.2. The RT interface will provide automatic processing for RT31 of the Mode codes
listed in Section 7.2.4. All other Mode codes not automatically handled by the RT interface will need to
be processed by your application. The application developer will need to configure the RT31 to receive
these required Mode codes and generate an interrupt upon transfer. This setup can be accomplished
using the ApiCmdRTSACon function as described in Section 7.2. See Section 7.4 for further information
regarding RT Interrupt Handling.

The user-developed interrupt service routine can be called to process the Broadcasted Mode code for
the simulated RT(s) in order to performing the functions necessary to simulate the Mode code command
issued.

7.3 RT Transfers Error Injection

There are two methods that you can use to inject errors into an RT transmission:

• Use the ApiCmdRTSAConErr function for error injection in any Status word or Data word transmit-
ted by an RT

• Manipulate the Status word Busy or Message Error bits using the Status word masking ability in
either the ApiCmdRTIni function, the ApiCmdRTSACon function or the ApiCmdRTNXW function.

These two methods are described in the following sections.

7.3.1 RT Transfers Error Injection into Status/Data Word

RT transmissions can be configured for error injection in any Status word or Data word transmitted by
an RT. The RT is capable of injecting one of the following errors for a defined transfer:

• Status Sync Error - changes the transmitted Status word sync pattern to one specified by the
user

• Data Sync Error - changes the transmitted Data word sync pattern to one specified by the user

• Parity Error - creates a parity error for the Status word or specified Data word

• Manchester stuck at high error - creates a Manchester stuck at high error for a specified Status
word, or Data Word at a specified bit position

• Manchester stuck at low error - creates a Manchester stuck at low error for a specified Status
word, or Data Word at a specified bit position

68 MIL-STD-1553 - V24.18.0

REMOTE TERMINAL PROGRAMMING

• Gap error - inserts specified Gap after defined Status or Data word

• Word Count High - transmits the number of Data words defined for the original transfer plus one

• Word Count Low - transmits the number of Data words defined for the original transfer minus one

• Bit Count High - transmits a specified number (1-3) additional bits for specified Status word or
Data word.

• Bit Count Low - transmits a specified number (1-3) less bits for specified Status word or Data
word.

• Alternate Bus Error - responds on the wrong bus

• Zero Crossing Low Deviation Error - implements zero crossing low deviation at a specified
Status word or Data word position, bit position with four predefined deviation values.

• Zero Crossing High Deviation Error - implements zero crossing high deviation at a specified
Command word or Data word position, bit position with four predefined deviation values.

To setup for error injection, the ApiCmdRTSAConErr function should be used after the RT has been
setup to transmit data using the ApiCmdRTBHDef and ApiCmdRTSACon functions. The following error
injection sample code will setup the transfer to inject a Data Sync Error on the third data word.

Set RT-to-BC RT01 Transmit SA02 WC15 (Inject Data Sync Error in 3rd data word)

wpos = 3; / / I n j e c t E r ro r on the 3 data word
bpos = 0; / / not used
bc_b i t s = 0 ; / / not used
t y _ a p i _ r t _ e r r . type = API_ERR_TYPE_DATA_SYNC ; / / e r r o r i n j e c t i o n type
t y _ a p i _ r t _ e r r . sync = 0x30 ; / / se t i n v a l i d data sync 110000
t y _ a p i _ r t _ e r r . con t i g = 0 ; / / not used
t y _ a p i _ r t _ e r r . err_spec = 0;
t y _ a p i _ r t _ e r r . err_spec |= (wpos << 16) ; / / wpos
t y _ a p i _ r t _ e r r . err_spec |= (bpos << 8) ; / / bpos
t y _ a p i _ r t _ e r r . err_spec |= (bc_b i t s << 0) ; / / bc_b i t s
ApiCmdRTSAConErr (ulModHandle , 0 ,

1 / *RT* / , 2 / *SA* / , r t _ h i d / * HID * / ,
API_RT_TYPE_TRANSMIT_SA ,
& t y _ a p i _ r t _ e r r) ;

7.3.2 RT Transfer Error Emulation via Status Word Response

The Status word sent by an RT upon receipt of a BC Command/Data word can be manipulated to indicate
that the RT is Busy or that it detected a Message Error. If either of these bits (See Figure 2.0.0-II, Status
Word Bits) is set by the user, the RT SA/Mode code will only respond with the Status word, and not the
requested data transmission/receipt. This can be accomplished using one of the following two methods:

MIL-STD-1553 - V24.18.0 69

REMOTE TERMINAL PROGRAMMING

• When initializing the RT using the ApiCmdRTIni function, the Next RT Status word parameter can
be initialized with either of the bits set. However, this will cause the bit(s) to be set for Subaddresses
and Mode code initialized for that RT. The following example initializes RT1 with the busy bit (4th
bit) set for the Next Status word.

/ / Remote Terminal I n i t i a l i z a t i o n o f RT1
/ / w i th the busy b i t se t i n Next Status word
ApiCmdRTIni (ulModHandle ,0 , 1 / *RT* / ,API_RT_ENABLE_SIMULATION , 0 , 8 , 0x0808) ;

• When setting up the RT Subaddress/Mode code using the ApiCmdRTSACon function, the Status
Word Mask control (smod) and Status Word Mask (swm) parameters can be setup to raise the
Busy or Message Error bits of the Status word. The following example shows RT1 Transmit SA2
setup such that the it’s Status Word response Message Error bit will be set (11th bit). The Status
word Mask Control (smod) is set to use logical "OR" function as the masking mechanism.

/ / RT1 Transmit SA2 i n i t i a l i z e d
/ / w i th the Message Er ro r b i t se t i n Next Status word
ApiCmdRTSACon(ulModHandle , 0 , 1 / *RT* / , 2 / *SA* / , r t _ h i d / * HID * / ,

API_RT_TYPE_TRANSMIT_SA ,
API_RT_ENABLE_SA , 0 / * rmod * / ,
API_RT_SWM_OR / * smod * / ,
0x0400 / *swm* /) ;

7.4 RT Interrupt Programming

As introduced in Section 7.2.1, the RT is capable of producing interrupts upon the occurrence of certain
events. Interrupt Handler(s) must be created to process the interrupts which occur after the RT has
been started and an interrupt occurs. Some possible RT Interrupt Handler applications may include:
(1) refilling a transmit buffer at the end of a transfer interrupt, (2) gathering the data words received in
the receive message buffer at the end of the transfer and/or (3) reporting transfer errors on a transfer
error interrupt. The functions required to setup RT interrupts and interrupt handler execution include
the Library Administration and Initialization functions as defined in Section 4.9, and the RT function call
defined as follows:

• ApiCmdRTSACon - Setup the RT Subaddress to perform an interrupt on any of the following
conditions:

– Interrupt on End of Transfer

– Interrupt on Transfer Error

Once you have configured the RT(s) to generate an interrupt and you have created an Interrupt Handler
function to handle the interrupt, then start the RT using the ApiCmdRTStart function to start data flow.
If the RT determines that an interrupt has occurred, the RT will initiate a call to the Interrupt Handler
function and provide information about the interrupt as defined in the ApiInstIntHandler handler definition
in the associated Reference Manual.

70 MIL-STD-1553 - V24.18.0

REMOTE TERMINAL PROGRAMMING

The following section describes how to setup an RT transfer to create an interrupt.

7.4.1 How to Setup the RT Transfer to Cause an Interrupt

To setup the interrupt the parameter Subaddress Control (con) of the ApiCmdRTSACon function is used.
The Subaddress Control parameter can be set to one of the two following values:

• API_RT_ENABLE_SA_INT_XFER can be used as parameter Subaddress Control in order to en-
able the interrupt on End of Transfer

• API_RT_ENABLE_SA_INT_ERR can be used as parameter Subaddress Control in order to en-
able the interrupt on Transfer Error

MIL-STD-1553 - V24.18.0 71

BUS MONITOR PROGRAMMING

8 Bus Monitor Programming

When data needs to be recorded from the bus one has to consider two options. The first option is to read
the data message by message, the second option is to read big chunks of data efficiently in bulk. For
the first option we recommend to implement an approach based on RT or BC interrupts where the data
is read from the receive data buffer. For the second option we recommend an implementation based on
Data Queues as described in Section 8.5.

The Data Queue Recording can be used in combination with Bus Monitor Triggers as described in
Section 8.1 and Bus Monitor Filters as described in Section 8.2.

8.1 Additional Bus Monitor Trigger

In recording mode the BM triggers on any message by default. If you need a different Start Trigger Event
you will need to setup at least one trigger. This section will describe the following:

• Trigger Definition (using ApiCmdBMTCBIni) - defines the types of triggers that are available
and how to setup a Trigger Control Block (TCB)

• Starting/Stopping the "Data Capture" Process (using ApiCmdBMFTWIni) - defines the soft-
ware functions required to create a Start Trigger Event and a Stop Trigger Event

• Arming the Trigger (using ApiCmdBMTIWIni) - defines the functions required to communicate
to the Bus Monitor which triggers to evaluate.

8.1.1 BM Trigger Definition

The Bus Monitor is capable of monitoring bus traffic using up to two dynamic triggers in parallel to
determine the start/stop of data capture. Triggers provide the user with the capability to monitor bus
traffic for the occurrence of a specific error condition (such as parity error) and/or a discrete external
trigger received at the BM Trigger input pin (See the corresponding Hardware Manual). Dynamic triggers
provide the user with the capability to monitor the bus traffic for a sequence of events. An example of
a sequence of events could be: SEQ1-a word received on the primary bus, SEQ2-the word is a status
word, and SEQ3-the word has bit 8 set.

Each trigger requires that the user first configure a Trigger Control Block (TCB) which contains informa-
tion about the conditions of the trigger. All triggers use the function ApiCmdBMTCBIni to configure their
TCB. The user has the capability of pre-defining up to 254 TCBs, then using them as the BM application
requires. This section will describe how to setup a TCB, however, to tell the BM the scheme to be used
to start and stop the "Data Capture" process and which TCBs to evaluate, you will need to issue two
additional commands to the BM as defined in Section 8.1.1.3 and Section 8.1.1.4.

The following table contains the list of parameters associated with the TCB. The values for each param-
eter are dependent upon the Type of Trigger you are setting up. The following sections will discuss the
parameter setup for different Triggers.

72 MIL-STD-1553 - V24.18.0

BUS MONITOR PROGRAMMING

Trigger Control Block Parameter Definitions
(ApiCmdBMTCBIni / TY_API_BM_TCB)

Struct Element Description Trigger type
tt Trigger Type - Trigger on:

• 0 - Error Condition
• 1 - External Event
• 2 - Received Word
• 3 - Data Value *

ALL

sot Generate External Strobe on Trigger ALL
tri Generate Interrupt on Trigger ALL
inv Invert Result of Limit Check Data Value
tres Trigger Reset - the bits in the Monitor Status Trigger pattern to

be reset when the trigger condition is met
ALL

tset Trigger Set - the bits in the Monitor Status Trigger pattern to be
set when the trigger condition is met

ALL

tsp Trigger Specification Data Value & Received
Word

next Next Trigger Control Block * Data Value & Received
Word

eom Next Trigger Control Block on End of Message Data Value & Received
Word

tdw Trigger Data word Error Condition & Re-
ceive Word

tmw Trigger Mask - defines bits of word relevant to Received word or
Data value trigger

Data Value

tuli Trigger Upper Limit - for range checks of Data Value Triggers Data Value
tlli Trigger Lower Limit - for range checks of Data Value Triggers Data Value

Note:
* Check the Reference Manual for a detailed overview of functions supported for different devices.

As shown in the table above, there are 4 parameters that apply to all types of triggers. These parameters
will be described in this section as follows:

• Generate External Strobe on Trigger - when set, if this TCB is active as one of the two possible
Triggers, and the condition specified in the TCB is met, the BM will output a strobe signal on the
external BM Trigger output pin.

• Generate Interrupt on Trigger - when set, if this TCB is active as one of the two possible Triggers,
and the condition specified in the TCB is met, the BM will generate a TCB Interrupt and pass the
TCB number to the BM Interrupt Handler Routine (user program)

• Trigger Reset - This parameter tells the BM what bits to reset in the Monitor Status Word if the trig-
ger condition is met. See Section 8.1.1.3 for a more detailed description of the Trigger Start/Stop
processing performed by the BM.

• Trigger Set - This parameter tells the BM what bits to set in the Monitor Status Word if the trigger
condition is met. See Section 8.1.1.3 for a more detailed description of the Trigger Start/Stop
processing performed by the BM.

MIL-STD-1553 - V24.18.0 73

BUS MONITOR PROGRAMMING

8.1.1.1 Bus Monitor Static Trigger Definition

A Static Trigger is configured using the ApiCmdBMTCBIni function. A static trigger is a dynamic trigger
sequence with only one trigger:

• Trigger on Error Condition

• Trigger on External Event (strobe or pulse) detected on the BM input Trigger pin.

The following two sections describe the parameters in the Trigger Control Block that are associated with
these triggers.

Trigger on Error Condition: You can setup the BM to trigger on any one or more error conditions. If
you specify more than one error condition for the Trigger Control Block, the trigger will be considered
valid if any one of the error conditions is detected. The types of errors that can be setup to cause a
Trigger Start/Stop Event in the Bus Monitor are shown in the table below.

Error Conditions for Triggering the Bus Monitor
Parameter Bit ID Bit # Error Description
ERR 15 Any Error (Logical OR of Bits 14 to 0).
ALTER 14 Alternate Bus Response Error
LCNT 13 Low Word count Error
HCNT 12 High Word count Error
STAT 11 Status Word Exception Error*
TADDR 10 Terminal Address Error / RT RT Protocol Error
GAP 9 Early Response or Gap too short
ILLEGL 8 Illegal Command Word/ Reserved Mode Code Error
TX 7 Transmission on both MILbus channels
IWGAP 6 Interword Gap Error
ISYNC 5 Inverted Sync Error
PAR 4 Parity Error
LBIT 3 Low Bit Count Error
HBIT 2 High Bit Count Error
MANCH 1 Manchester Coding Error
NRESP 0 Terminal No Response Error

Note:
* The default Status word Exception mask is set to 0x07ff with the ApiCmdBMIni function (all status bits
are checked). If you want the BM to trigger on only a subset of bits in the Status word, you must setup
the Status Word Exception Mask using the BM function ApiCmdBMSWXMIni accordingly.

The subset of parameters in the Trigger Control Block Structure that define an Error Trigger include the
parameters shown in the following table.

74 MIL-STD-1553 - V24.18.0

BUS MONITOR PROGRAMMING

Trigger Control Block Parameter Definitions Applicable to Error Condition Trigger
(ApiCmdBMTCBIni / TY_API_BM_TCB)

Struct Element Description Trigger type
tt Trigger Type - Trigger on:

• 0 - Error Condition
• 1 - External Event
• 2 - Received Word
• 3 - Data Value

0

sot Generate External Strobe on Trigger If desired
tri Generate Interrupt on Trigger If desired
tres Trigger Reset - the bits in the Monitor Status Trigger pattern to

be reset when the trigger condition is met
tset Trigger Set - the bits in the Monitor Status Trigger pattern to be

set when the trigger condition is met
tdw Trigger Data word

The following code sample sets up a Static Trigger Control Block with an Error Condition trigger to trigger
on a Parity error and a Low Word Count error. When the trigger condition is met, the BM will not reset
any bits in the Monitor Status Trigger pattern, but will set bits 0x0F in the Monitor Status Trigger pattern.

/ / Setup S t a t i c T r igge r − Er ro r Cond i t ion
/ / i n i t TCB 3 f o r T r igge r on P a r i t y e r r o r and a Low Word Count e r r o r
api_bm_tcb . t t = API_BM_TRG_ERR_CONDITION ;
api_bm_tcb . sot = API_DIS ; / / Ex te rna l T r igge r
api_bm_tcb . t r i = API_DIS ; / / I n t e r r u p t on Tr igger
api_bm_tcb . i nv = API_DIS ; / / I nve rs ion o f L i m i t Check
api_bm_tcb . t r e s = 0x00 ; / / Moni tor Status Tr igger pa t t e rn Reset B i t s
api_bm_tcb . t s e t = 0x0F ; / / Moni tor Status Tr igger pa t t e rn Set B i t s
api_bm_tcb . tsp = 0x00 ; / / T r igge r spec
api_bm_tcb . next = 0xFF ; / / next TCB (d isab led f o r S t a t i c t r i g g e r)
api_bm_tcb .eom = 0xFF ; / / next TCB End of Message c o n t r o l (d isab led)
api_bm_tcb . tdw = 0x2010 ; / / T r igge r Data Word − i n d i c a t i n g check f o r p a r i t y and
/ / low word count
api_bm_tcb . tmw = 0xFFFF ; / / T r igge r mask word
api_bm_tcb . t u l i = 0x0000 ; / / T r igge r upper l i m i t
api_bm_tcb . t l l i = 0x0000 ; / / T r igge r lower l i m i t
ApiCmdBMTCBIni (ulModHandle , 0 , 3 / * t i d * / , API_ENA , &api_bm_tcb) ;

Trigger on External Event Condition: The External Event Condition Static Trigger will trigger on
an external strobe or pulse detected on the BM input Trigger pin. This type of Static Trigger is the
least complex to setup. The subset of parameters in the Trigger Control Block Structure that define an
External Event Trigger include the parameters shown the following table.

MIL-STD-1553 - V24.18.0 75

BUS MONITOR PROGRAMMING

Trigger Control Block Parameter Definitions for External Event Trigger
(ApiCmdBMTCBIni / TY_API_BM_TCB)

Struct Element Description Trigger type
tt Trigger Type - Trigger on:

• 0 - Error Condition
• 1 - External Event
• 2 - Received Word
• 3 - Data Value

1

sot Generate External Strobe on Trigger If desired
tri Generate Interrupt on Trigger If desired
tres Trigger Reset - the bits in the Monitor Status Trigger pattern to

be reset when the trigger condition is met
tset Trigger Set - the bits in the Monitor Status Trigger pattern to be

set when the trigger condition is met

The following code sample sets up a Static Trigger Control Block with an External Event trigger. When
the trigger condition is met, the BM will not reset any bits in the Monitor Status Trigger pattern, but will
set bits 0x0F in the Monitor Status Trigger pattern.

/ / Setup S t a t i c T r igge r − Ex te rna l Event −
/ / Ex te rna l s t robe or pulse detected on the BM inpu t T r igge r p in
/ / i n i t TCB 4
api_bm_tcb . t t = API_BM_TRG_EXTERNAL_EVENT ; / / T r igge r Type
api_bm_tcb . sot = API_DIS ; / / Ex te rna l T r igge r
api_bm_tcb . t r i = API_DIS ; / / I n t e r r u p t on Tr igger
api_bm_tcb . i nv = API_DIS ; / / I nve rs ion o f L i m i t Check
api_bm_tcb . t r e s = 0x00 ; / / Moni tor Status Tr igger pa t t e rn Reset B i t s
api_bm_tcb . t s e t = 0x0F ; / / Moni tor Status Tr igger pa t t e rn Set B i t s
api_bm_tcb . tsp = 0x00 ; / / T r igge r spec
api_bm_tcb . next = 0xFF ; / / next TCB (d isab led f o r S t a t i c t r i g g e r)
api_bm_tcb .eom = 0xFF ; / / next TCB End of Message c o n t r o l (d isab led)
api_bm_tcb . tdw = 0xFFFF ; / / T r igge r data word
api_bm_tcb . tmw = 0xFFFF ; / / T r igge r mask word
api_bm_tcb . t u l i = 0x0000 ; / / T r igge r upper l i m i t
api_bm_tcb . t l l i = 0x0000 ; / / T r igge r lower l i m i t
ApiCmdBMTCBIni (ulModHandle , 0 , 4 / * t i d * / , API_ENA , &api_bm_tcb) ;

8.1.1.2 Bus Monitor Dynamic Trigger Definition

A Dynamic Trigger is a sequence of triggers containing more than one trigger. A Dynamic Trigger is also
configured using the ApiCmdBMTCBIni function. Two Dynamic triggers can be active at one time. In
addition to the already defined error trigger and external event trigger this chapter will introduce:

• Trigger on Received word

76 MIL-STD-1553 - V24.18.0

BUS MONITOR PROGRAMMING

• Trigger on Data Value.

If your Dynamic Trigger involves more than one trigger condition, then multiple TCBs will need to be
defined for the dynamic trigger and linked together using the Next TCB parameter in the TCB. The
first trigger in the sequence will reference the TCB of the next trigger to evaluate when the first trigger
condition is met, and so on. Following is a High Level Language example of a Dynamic Sequence
Trigger using pre-defined TCBs (1 - 4):

Dynamic Sequence Trigger (T0):

IF TCB1 [Received word = Command Word = Data value]
THEN

Set B i t 0 o f the Moni tor Status Tr igger pa t t e rn
Evaluate TCB2 (Next TCB)

ELSE ReARM TCB1 (EOM TCB)

IF TCB2 [Data Word 3 i s i n range (100 −1000)]
THEN

Set B i t 1 o f the Moni tor Status Tr igger pa t t e rn
Evaluate TCB3 (Next TCB)

ELSE Return to TCB1 Eva lua t ion (EOM TCB)

IF TCB3 [Received word = Command Word = Data Value]
THEN

Set B i t 2 o f the Moni tor Status Tr igger pa t t e rn
Evaluate TCB4 (Next TCB)

ELSE Return to TCB1 Eva lua t ion (EOM TCB)

IF TB4 [Data Word 6 B i t 5 AND B i t 8 Set]
THEN

Set B i t 3 o f the Moni tor Status Tr igger pa t t e rn
Evalute TCBxx (Next Index , ARM TBxx)

ELSE Return to TCB3 Eva lua t ion (EOM Index)

The following two sections describe the parameters in the Trigger Control Block that are associated with
these triggers.

Trigger on Received Word: The Trigger on Received word enables the user to setup the Bus Monitor
to search for a Command word (1 or 2), Status word or Data word on the Primary or Secondary Bus
with a specified value. The bits defined for setup in the Trigger Specification (tsp) include the Received
words as defined in the following table:

Received Words Triggering the Bus Monitor
Parameter Bit ID Bit # Receive Word Description

RXA 5 Word received on Primary Bus
Continued on next page

MIL-STD-1553 - V24.18.0 77

BUS MONITOR PROGRAMMING

Continued from previous page
Parameter Bit ID Bit # Receive Word Description

RXB 4 Word received on Secondary Bus
CW2 3 Word is second Command Word for RT RT transfer
ST 2 Word is Status Word
DW 1 Word is Data Word
CW 0 Word is Command Word

The subset of parameters in the Trigger Control Block Structure that define a Trigger on Received word
include the parameters shown in following table.

Trigger Control Block Parameter Definitions
(ApiCmdBMTCBIni / TY_API_BM_TCB)

Struct Element Description Trigger type
tt Trigger Type - Trigger on:

• 0 - Error Condition
• 1 - External Event
• 2 - Received Word
• 3 - Data Value

3

sot Generate External Strobe on Trigger If desired
tri Generate Interrupt on Trigger If desired
tres Trigger Reset - the bits in the Monitor Status Trigger pattern to

be reset when the trigger condition is met
tset Trigger Set - the bits in the Monitor Status Trigger pattern to be

set when the trigger condition is met
tsp Trigger Specification
next Next Trigger Control Block
eom Next Trigger Control Block on End of Message
tdw Trigger Data word
tmw Trigger Mask - defines bits of word relevant to Received word or

Data value trigger

The trigger condition is valid, if the following expression becomes valid:

(The word is received on the Primary or Secondary Bus) AND
(The word is Command word 2 OR Status word OR Data word OR Command word) AND
(Compare Value Check == True)

The following code sample sets up a Dynamic Trigger Control Block (TCB 5) with an Received Word
Condition trigger to trigger on reception of a Command word received on the Primary or Secondary Bus
for RT1 Transmit SA1 with a 32 data word count. When the trigger condition is met, the BM will not reset
any bits in the Monitor Status Trigger pattern, but will set bits 0x01 in the Monitor Status Trigger pattern.
The BM will then begin to evaluate TCB 6 for the next word received by the BM which is indicated when
you set the Next TCB (next) to 0xFF. If the Trigger condition is not fully met by the end of the transfer,
the BM will continue to monitor TCB 5 which is indicated when you set the EOM TCB (eom) to 0xFF.

/ / Setup Dynamic Tr igger − Received Word − Command word rece ived on pr imary or

78 MIL-STD-1553 - V24.18.0

BUS MONITOR PROGRAMMING

/ / secondary bus f o r RT1 SA1 wi th a 32−word data count
/ / i n i t TCB 5 f o r T r igge r on Command from RT1 Transmit SA1 wi th Data word count = 32
api_bm_tcb . t t = API_BM_TRG_RECEIVED_WORD ; / / T r igge r Type
api_bm_tcb . sot = API_DIS ; / / Ex te rna l T r igge r
api_bm_tcb . t r i = API_DIS ; / / I n t e r r u p t on Tr igger
api_bm_tcb . i nv = API_DIS ; / / I nve rs ion o f L i m i t Check
api_bm_tcb . t r e s = 0x00 ; / / Moni tor Status Tr igger pa t t e rn Reset B i t s
api_bm_tcb . t s e t = 0x01 ; / / Moni tor Status Tr igger pa t t e rn Set B i t s
api_bm_tcb . tsp = 0x31 ; / / T r igge r spec b i t s set f o r P r i or Sec Bus & CW
api_bm_tcb . next = 0x06 ; / / next TCB
api_bm_tcb .eom = 0xFF ; / / next TCB End of Message c o n t r o l
api_bm_tcb . tdw = 0x0C20 ; / / Cmd = RT1TSA1 wi th word count = 32
api_bm_tcb . tmw = 0xFFFF ; / / T r igge r mask word − a l l b i t s app l i cab le
api_bm_tcb . t u l i = 0x0000 ; / / T r igge r upper l i m i t
api_bm_tcb . t l l i = 0x0000 ; / / T r igge r lower l i m i t
ApiCmdBMTCBIni (ulModHandle , 0 , 5 / * t i d * / , API_ENA , &api_bm_tcb) ;

Trigger on Data Value Condition: The Trigger on Data Value Trigger enables the user to setup the
Bus Monitor to evaluate a specific Data value in a word position value 1 to 32 which corresponds directly
with Data Word Location 1 to 32 of a MILbus transfer. This type of Dynamic Trigger is best used in
conjunction with a Received Word Trigger defined in the previous section in order to provide a filtering
of the transfer message prior to data word evaluation. The subset of parameters in the Trigger Control
Block Structure that define a Dynamic Data Value Trigger include the parameters shown in the following
table.

Trigger Control Block Parameter Definitions Applicable to Data Value Trigger
(ApiCmdBMTCBIni / TY_API_BM_TCB)

Struct Element Description Trigger type
tt Trigger Type - Trigger on:

• 0 - Error Condition
• 1 - External Event
• 2 - Received Word
• 3 - Data Value

3

sot Generate External Strobe on Trigger If desired
tri Generate Interrupt on Trigger If desired
inv Invert Result of Limit Check If desired
tres Trigger Reset - the bits in the Monitor Status Trigger pattern to

be reset when the trigger condition is met
tset Trigger Set - the bits in the Monitor Status Trigger pattern to be

set when the trigger condition is met
tsp Trigger Specification - Data Word Position
next Next Trigger Control Block
eom Next Trigger Control Block on End of Message
tdw Trigger Data word
tmw Trigger Mask - defines bits of word relevant to Received word or

Data value trigger
tuli Trigger Upper Limit - for range checks of Data Value Triggers

Continued on next page

MIL-STD-1553 - V24.18.0 79

BUS MONITOR PROGRAMMING

Continued from previous page
Struct Element Description Trigger type

tlli Trigger Lower Limit - for range checks of Data Value Triggers

The received MILbus Word is masked (bitwise logical AND) with the Trigger Mask word (tmw). The result
is compared with the Upper limit (tuli) and Lower limit (tlli). Proper setting of these values allow masking
for certain bit fields as well as for dedicated values.

The trigger condition is valid, if the following expression becomes valid:

(Received Bus Word AND Trigger Mask word) >= Lower limit AND
(Received Bus Word AND Trigger Mask word) <= Upper limit

The following code sample sets up a Dynamic Trigger Control Block (TCB 6) with a Data Value Condition
trigger to trigger on reception of a 4th Data word equal to 0x0033. It is designed to be used in sequence
with the TCB 5 which was setup in the previous section If the BM determines that the 4th word does
equal 0x0033, the BM will not reset any bits in the Monitor Status Trigger pattern, but will set bits 0x0E
in the Monitor Status Trigger pattern. It will then be re-armed with TCB5 which is indicated when you set
the Next TCB (next) to 0x05. If the 4th word does not equal 0x0033, no action is taken with the Monitor
Stats Trigger word bits and the BM will be re-armed using TCB 5 which is indicated when you set the
EOM TCB (eom) to 0x05.

/ / Setup Dynamic Tr igger − Data Value − 4 th Data word equal to 0x0033 .
/ / i n i t TCB 6 f o r T r igge r on Command from RT1 Transmit SA1 wi th Data word count = 32
api_bm_tcb . t t = API_BM_TRG_DATA_VALUE ; / / T r igge r Type
api_bm_tcb . sot = API_DIS ; / / Ex te rna l T r igge r
api_bm_tcb . t r i = API_DIS ; / / I n t e r r u p t on Tr igger
api_bm_tcb . i nv = API_DIS ; / / I nve rs ion o f L i m i t Check
api_bm_tcb . t r e s = 0x00 ; / / Moni tor Status Tr igger pa t t e rn Reset B i t s
api_bm_tcb . t s e t = 0x0E ; / / Moni tor Status Tr igger pa t t e rn Set B i t s
api_bm_tcb . tsp = 0x04 ; / / Check the 4 th Data word f o r value i n . tdw
api_bm_tcb . next = 0x05 ; / / next TCB
api_bm_tcb .eom = 0x05 ; / / next TCB End of Message c o n t r o l
api_bm_tcb . tdw = 0x0033 ; / / Compare value = 0x0033
api_bm_tcb . tmw = 0xFFFF ; / / T r igge r mask word − a l l b i t s app l i cab le
api_bm_tcb . t u l i = 0xFFFF ; / / T r igge r upper l i m i t
api_bm_tcb . t l l i = 0x0000 ; / / T r igge r lower l i m i t
ApiCmdBMTCBIni (ulModHandle , 0 , 6 / * t i d * / , API_ENA , &api_bm_tcb) ;

8.1.1.3 Starting/Stopping the "Data Capture" Process

Each user-defined Trigger Control Block contains two parameters associated with starting or stopping
the "Data Capture" process. These two parameters include:

• Trigger Set Bits - define the Trigger bits in the Monitor Status Word to set

80 MIL-STD-1553 - V24.18.0

BUS MONITOR PROGRAMMING

• Trigger Reset Bits - define the Trigger bits in the Monitor Status Word to reset

Each time a TCB condition is met, the Bus Monitor will set/reset the Trigger bits (8 bits) of the Monitor
Status Word (internal to the Bus Monitor) as the user specifies in the TCB parameters: Trigger Set Bits
(tset) and Trigger Reset Bits (tres). (The 8 Trigger bits of the Monitor Status Word are referred to as the
Monitor Status Trigger pattern.) This provides the user with the capability to "build" a "Data Capture"
Start Trigger Event or to cause a Stop Trigger Event. Thus, providing the user with the capability to
create an infinite number of scenarios to start or stop the "Data Capture" process.

In order for this capability to work, the user must specify the final bit value that the Bus Monitor will
associate as the Start Trigger Event and/or the Stop Trigger Event. This bit value is defined within the
Function Trigger Word using the ApiCmdBMFTWIni function. As shown in the table below, the Function
Trigger Word defines the bit patterns used to create a Start Trigger Event and a Stop Trigger Event. The
BIU Processor uses the Function Trigger Word and the Monitor Status Trigger pattern to determine the
start and stop of the "Data Capture".

Bus Monitor Function Trigger Word
31 24 23 16 15 8 7 0
Stop Trigger Mask or
Reserved

Stop Trigger Compare
or Reserved.

Start Trigger Mask Start Trigger Compare

The Start Trigger Event condition is met if the state of the Monitor Status Trigger pattern masked
(logical "AND") with the Start Trigger Mask is equal to the Start Trigger Compare pattern.

The Stop Trigger Event condition is met if the state of the Monitor Status Trigger pattern masked
(logical "AND") with the Stop Trigger Mask is equal to the Stop Trigger Compare pattern.

Note:
The Stop Trigger Mask and Compare field are only used during Standard Data Capture Mode

This feature is most useful for Dynamic triggers containing more than one sequence of TCBs or a
combination of a single trigger and Dynamic Triggers. For instance, you may not want the "Data Capture"
to start when the first TCB condition is met. You may want the "Data Capture" Start Trigger Event to
occur after two or more TCB conditions have been met. In addition, you may want the Stop Trigger Event
condition to occur with the last TCB or upon the occurrence of a trigger such as an external pulse or
error condition.

In the previous section, we have example code for an External Event trigger (TCB 4), and an Error
Condition trigger (TCB3). There are also two TCBs (TCB 5 and 6) which are linked together to form one
Dynamic Sequence Trigger. The first two TCBs are defined with parameters "tset" = 0x0F. The Dynamic
TCBs set the "tset" sequentially (TCB5 sets "tset" = 0x01, TCB6 sets "tset" = "0x0E") such that when
both conditions are met the Monitor Status Trigger pattern equals 0x0F. In each trigger condition, the
final trigger pattern to create a Start Event Trigger is 0x0F, therefore, the following code shows how to
configure the Function Trigger Word in the BM to start "Data Capture" when the Monitor Status Trigger
pattern equals 0x0F:

/ / Set the Funct ion Tr igger Word wi th Mask and compare Values
/ / the Stop Tr igger Mask and Compare i s not used i n t h i s example .

MIL-STD-1553 - V24.18.0 81

BUS MONITOR PROGRAMMING

ApiCmdBMFTWIni (ulModHandle , 0 ,
API_BM_WRITE_ALL ,
0x00 / * Stop Tr igger Mask * / ,
0xFF / * Stop Tr igger Compare * / ,
0x0F / * S t a r t T r igge r Mask * / ,
0x0F / * S t a r t T r igge r Compare * /) ;

8.1.1.4 Arming the Trigger

As stated earlier in this section, the Bus Monitor is capable of monitoring bus traffic using up to two
trigger sequences in parallel. To enable the Bus Monitor to evaluate the Trigger(s) you have defined in
your Trigger Control Blocks, you must setup the Trigger Index Word using the ApiCmdBMTIWIni function.

Issuing the ApiCmdBMTIWIni function command tells the BM which TCB(s) to evaluate for each the two
triggers allowed to be evaluated simultaneously.

Bus Monitor Trigger Index Word
31 24 23 16 15 8 7 0
Reserved Reserved Sequence Trigger 1

TCB Index
Sequence Trigger 0
TCB Index

In the previous section, we have example code for an single External Event trigger (TCB 4), an single
Error Condition Trigger (TCB3). In addition, two TCBs (TCB 5 and 6) are linked together to form one
Dynamic Sequence Trigger. If we want to enable the BM to evaluate two of these TCBs simultaneously
we should issue the ApiCmdBMTIWIni function as follows:

/ / Set the Tr igger Index Word wi th the indexes of the TCBs
ApiCmdBMTIWIni (ulModHandle , 0 ,

API_BM_WRITE_ALL ,
0 , / / reserved ,
0 , / / reserved ,
3 , / / sequence 0 TCB s i n g l e e r r o r t r i g g e r
5) ; / / sequence 1 TCB dynamic t r i g g e r sequence

8.2 Additional Bus Monitor Filter

There is one additional function that will aid the developer in filtering out bus traffic that is not required
for evaluation or recording. This function is applicable to all Capture modes and is defined as follows:

• ApiCmdBMFilterIni - Enables/disables the recording of 1553 transfers based on user-specified
RT Transmit and Receive Subaddresses and Mode codes. (When the BM is initialized using the
ApiCmdBMIni function, all RT Transmit and Receive Subaddresses and Mode codes are enabled).

82 MIL-STD-1553 - V24.18.0

BUS MONITOR PROGRAMMING

8.3 Recording Using Queuing

The BM can be setup to store the data to the Monitor Buffer such that 1553 transfers can be retrieved in
a queuing fashion. This mode is the most simplistic mode to use. You would use Queuing if you want
to record the user-specified bus traffic and do not require the use of a trigger for data analysis and/or if
you prefer the structured outputs available in this recording mode. The Recording with Queuing process
requires the use of the following functions:

• ApiCmdBMIni - Initialize the BM.

• ApiCmdQueueIni - this function is used to initialize the BM Queuing process. This function takes
the place or the ApiCmdBMCapMode.

• ApiCmdQueueStart - this function will start queuing the BM data to the Monitor Buffer. (This
function takes the place of ApiCmdBMStart.)

• ApiCmdQueueRead - this function will return a Message entry on each call. It is a First-in,
First-out manner. If no message is on the stack then the return value will indicate this. The
Monitor Buffer pointer starts at the first entry of the queue and is automatically updated to the
next transfer entry upon completion of the ApiCmdQueueRead function. At that time an additional
ApiCmdQueueRead function can be issued to read the next entry.

The BSP sample ls_bc_rt_bm_sample.c shows this mode for the Bus Monitor.

8.4 Recording Using Data Queue Recording

The Data Queue Recording has been designed to copy big chunks of data in an efficient way. All Data
Queue functions start with a ApiCmdDataQueue prefix. These functions are used in combination of the
standard Bus Monitor functions which start with a ApiCmdBM prefix.

• ApiCmdBMIni - Initialize the BM

• ApiCmdBMCapMode - Set the BM capture mode to API_BM_CAPMODE_RECORDING

• ApiCmdBMStart - Start the BM

• ApiCmdDataQueueOpen - Open the Data Queue (DQ)

• ApiCmdDataQueueControl - Start the DQ with API_DATA_QUEUE_CTRL_MODE_START

• ApiCmdDataQueueRead - Read from DQ with size zero to check if data is available

• ApiCmdDataQueueRead - Read from DQ with size greater zero to copy the available data

• ApiCmdBMHalt - Stop the BM

• ApiCmdDataQueueControl - Stop the DQ with API_DATA_QUEUE_CTRL_MODE_STOP

• ApiCmdDataQueueRead - Read from DQ with size zero to check if data is available

• ApiCmdDataQueueRead - Read from DQ with size greater zero to copy the available data

• ApiCmdDataQueueClose - Close the DQ

MIL-STD-1553 - V24.18.0 83

BUS MONITOR PROGRAMMING

8.5 1553 Data Queue Recording

A typical Data Queue Recording sequence can be found in the ls_recording_replay_sample.c and
ls_bm_sample.c delivered with the BSP. These samples also show how to parse the data returned
by the bus monitor.

The function ApiCmdDataQueueRead returns the data in a binary format as described in section 8.6. If
the data is post processed it is strongly recommended to always read all available data. This guaranties
that the returned data does not contain any partial messages.

E.g. If the Bus Monitor receives a full size message which consists out of 144 bytes in the bus monitor.
ApiCmdDataQueueRead will either return return 0 available bytes or 144 bytes. In the first case the
message has not been complete. In the second case the message was completely received. This
makes parsing and post processing the data much easier. If the application however reads a fixed size
of byes it can not be guaranteed that the data returned contains complete messages.

8.6 Format of Data Stored in the 1553 Monitor Buffer

The Monitor stores all received words from the bus together with Time Tag information and possible error
entries, as 32 bit Monitor Words in little endian format. The Monitor Words are described in section 8.6.1.

8.6.1 Monitor Words

012345678910111213141516171819202122232425262728293031

Type C Entry

• Type [Bit 31 - 28] Describes what is stored in the Entry field

– 0x0 Entry not updated

– 0x1 Error Word Entry

– 0x2 Time Tag Low Entry

– 0x3 Time Tag High Entry

– 0x8 Bus Word Entry - Command Word on Primary Bus

– 0x9 Bus Word Entry - Command Word 2 on Primary Bus

– 0xA Bus Word Entry - Data Word on Primary Bus

– 0xB Bus Word Entry - Status Word on Primary Bus

– 0xC Bus Word Entry - Command Word on Secondary Bus

– 0xD Bus Word Entry - Command Word 2 on Secondary Bus

– 0xE Bus Word Entry - Data Word on Secondary Bus

– 0xF Bus Word Entry - Status Word on Secondary Bus

• C [Bit 27] Entry Connection flag. Set to one if an additional entry follows which is logically con-
nected to this entry. This bit is always set, if during a single word receive operation more than one
entry is written to the buffer. For example, this can happen if the first command word of a transfer

84 MIL-STD-1553 - V24.18.0

BUS MONITOR PROGRAMMING

is received and the Time tag information is additionally stored in the buffer. Also, it can happen if
an erroneous word is received and an the error entry is written to the buffer.

• Entry [Bit 26 - 0] The interpretation of this Entry depends on the Type field. See Sections 8.6.2,
8.6.3, 8.6.4 and 8.6.5 for details.

8.6.2 1553 Bus Word Entry

01234567891011121314151617181920212223242526

SR Gap Bus Word

• S [Bit 26] Start Trigger Flag - If Start Trigger flag is set, the Bus Word Entry is related to the start
trigger event which starts capturing of MILbus traffic.

• R [Bit 25] Reserved.

• Gap [Bit 24 - 16] Gap Time Value - The Gap Time value reports the time between the current and
the previous received MILbus Words, in 0.25us steps. If the words are received continuously, the
reported gap time will be 2us, according to the "MIL-STD1553 Gap time Measurement Definition".
The range of the gap time values is 2us to 109.75us. If the reported gap time value is zero, the
gap time was greater than 109.75us.

• Bus Word [Bit 15 - 0] Received MILbus Word - The received 16 bit MILbus Word which was
received by the current operation. The word type (command, status or data) is defined by the
Type field.

8.6.3 1553 Time Tag Low Entry

01234567891011121314151617181920212223242526

RSeconds Microseconds

• R [Bit 26] Reserved.

• Seconds [Bit 25 - 20] Seconds of minute 0 to 59.

• Microseconds [Bit 19 - 0] Microsecond of second 0 to 999999.

8.6.4 1553 Time Tag High Entry

01234567891011121314151617181920212223242526

R Days Hours Minutes

• R [Bit 26 - 20] Reserved.

• Days [Bit 19 - 11] Day of year 1 to 365.

• Hours [Bit 10 - 6] Hour of the day 0 to 23.

• Minutes [Bit 5 - 0] Minutes of hour 0 to 59.

MIL-STD-1553 - V24.18.0 85

BUS MONITOR PROGRAMMING

8.6.5 1553 Error Word Entry

01234567891011121314151617181920212223242526

S Reserved TR Error

• S [Bit 26] Start Trigger Flag - If Start Trigger flag is set, the Error Word Entry is related to the start
trigger event, which starts capturing of MILbus traffic.

• Reserved [Bit 25 - 18] Reserved.

• T [Bit 17] Transmit RT - This bit position is set if the Error Word Entry is related to a transmit
command.

• R [Bit 16] Receive RT - This bit position is set if the Error Word Entry is related to a receive
command.

• Error [Bit 15 - 0] The Error Type field indicates error type which was detected during the receive
operation of the related, received word. 1

– Bit 15 ANY-ERROR (logical OR of Bits 14 to 0)

– Bit 14 Alternate Bus Response Error

– Bit 13 Low Word count Error

– Bit 12 High Word count Error

– Bit 11 Status Word Exception 2

– Bit 10 Terminal Address Error / RT-RT Protocol Error

– Bit 9 Early Response or Gap Time too short Error

– Bit 8 Illegal Command Word / Reserved Mode Code Error

– Bit 7 Transmission on both MILbus channels

– Bit 6 Interword Gap Error

– Bit 5 Inverted Sync Error

– Bit 4 Parity Error

– Bit 3 Low Bit Count Error

– Bit 2 High Bit Count Error

– Bit 1 Manchester Coding Error

– Bit 0 Terminal No Response Error

1If an error is detected during a RT- RT- transfer, it will be related to the currently active RT. If the monitor detects a protocol error
during a RT-RT- transfer, it will be related to both RT’s.

2The default Status word Exception mask is set to 0x07ff with the ApiCmdBMIni function (all status bits are checked). If you want
the BM to detect an error on only a subset of bits in the Status word, you must setup the Status Word Exception Mask using the
BM function ApiCmdBMSWXMIni accordingly.

86 MIL-STD-1553 - V24.18.0

REPLAY PROGRAMMING

9 Replay Programming

If Replay is enabled, the BIU Processor physically replays a file in the format as recorded during the
Monitor Operation. Before Replay can be started, the first entries of the file must be copied to the
Replay buffer area with ApiWriteRepData. With each call of this function half of a Replay buffer can be
written. Call this function twice in order to fill the complete buffer. The replay buffer size in the Global
RAM is 20000 Hex for each stream. Once started, the BIU Processor reads and transmits the data from
the Replay Buffer. If programmed, an interrupt can be asserted each time half of the Replay buffer is
transmitted. This provides for double buffer type refill strategy. When the Replay Buffer end is reached,
the processor will wrap around to the replay buffer start address. This operation continues until the
number of entries, as specified in the Replay Entry Count location are processed or a monitor entry
indicating "Entry not Updated" is found.

Note:
ApiWriteRepData does automatically write to the half buffer which is currently not replayed.

The replay mode can be configured to disable replay for a selected RT. If the selected RT is disabled
for Replay, an external RT should be connected to the bus to respond to the BC commands to that RT.
Special handling is provided to cope with differences in the response time between the recorded and the
actual external RT.

The protocol type (MIL-STD-1553A or MIL-STD-1553B) must match the protocol type of the recorded
RT’s.

Since the Replay function is the bus master and issues the command words on the MIL-STD-1553 bus
it can not be combined with BC operation. Any attempt to enable the Replay mode together with the
BC mode will be rejected. However, the Replay mode can be combined with RT and Bus Monitor Mode.
RTs can be setup to mailbox the data from the replay file or from external RT’s, or actively respond to
commands issued from the replay module.

Note:
The Replay mode does not reproduce any recorded error conditions nor does it provide special error
handling for external RT’s during the replay process. The only exception handling is a timeout feature
which inhibits a lock-up if external RT’s are used which do not respond.

In general, the order in which you will need to setup your Replay Configuration using the Replay functions
is as follows:

• Initialization (ApiCmdReplayIni) - provides initialization of the following:

– Enable/disable half buffer transmitted interrupt

– Time Tag replay setup:

* Replay of the IRIG time tag

* Replay only the Low IRIG Time Tag (seconds and microseconds)

* Disable time tag replay

• Definition of the amount of data (in bytes) to be replayed

• Copy the recorded Monitor data to the Replay Buffer area in Global RAM using the ApiWriteRep-
Data System function. This function allows you to write a half buffer size (0x10000) or less to the
currently inactive half Replay Buffer.

MIL-STD-1553 - V24.18.0 87

REPLAY PROGRAMMING

• An optional choice now would be to disable any RTs for which you do not wish the data to be
replayed. If you disable an RT, you will need to connect an External RT to respond to the BC
commands to the RT which are present in the data to be replayed. The ApiCmdReplayRT function
provides the disable RT capability.

• Start the Replay using the ApiCmdReplayStart function.

• Refill the Replay Buffer:

– If a Half-Buffer transmitted interrupt has been enabled, and an interrupt handler has been
developed to handle the interrupt, then the Replay Buffer can be refilled.

– As an alternative to the interrupt the function ApiCmdReplayStatusRead can be used to poll
the half buffer full interrupt counter.

The ls_recording_replay_sample.c demonstrates how to fill both halves of the Replay Buffer, then start
the Replay function. The Entry count of the Replay Buffer is continuously monitored, and when the count
= 0, the Replay is stopped. Each time the replay interrupt count is incremented (a half Replay buffer was
replayed to the bus) another half Replay buffer is loaded.

Note:
The Replay function is not available on all modules. Check Appendix B of the Reference Manual for a
detailed overview of functions supported for different devices.

88 MIL-STD-1553 - V24.18.0

TROUBLESHOOTING

10 Troubleshooting

This section is designed to help in case problems appear. Some of these points may seem obvious, but
some can easily be overlooked and might be helpfull.

10.1 Checking Return Values

For every function call the return value should be checked. Most functions will return zero in case of
success. In case of a different return value it should be used as input parameter for function ApiGetEr-
rorMessage to provide a human readable error description.

10.2 Using Counters

Reading and evaluating transmission and error counters of BC, RT and BM can help understand prob-
lems on the bus. Use the functions ApiCmdBCStatusRead, ApiCmdRTStatusRead and ApiCmdBMSta-
tusRead to obtain the status information.

10.3 Monitoring the Bus Traffic

Enable the monitoring of the stream or attach a separate board to the bus. This may be a different board,
for example with the PBA.pro running on it. Understanding the traffic on the bus can help to understand
the nature of the problem.

10.4 Contacting Support

Collect data about the board. What is the correct name of the board, which are the versions on board?
The output of the print board versions sample delivered with the BSP should always be provided in
support requests to speed up the problem determination. To get this output start the sample executable
delivered with the BSP with the sample number one. E.g.

1553_sample_project . exe l o c a l 0 1 1

Support either be addressed with the technical support form on www.aim-online.com or be sent via email
to support@aim-online.com

MIL-STD-1553 - V24.18.0 89

MIGRATING FROM API 22 TO API 24

11 Migrating from API 22 to API 24

This section is designed to help in migrating applications running with BSP 11.x (Library 22) to BSP
12.x.y (Library 24). The gap between 22 and 24 is due to an internal version 23 which was only released
in a special BSP. The interface of library 22 and 23 is identical.

11.1 Library Interface

• Recompile The application needs to be recompiled in order to match the calling convention and
struct alignment of the new library.

• Rename The Windows DLL and LIB have been renamed to contain the major version in the name.
Through this we want to ensure that your application is only started with a compatible library. The
linker settings in the application project needs to be adapted.

11.2 Incompatible Function Prototypes

• Return Value The return value of all functions indicating success or failure by an integral value
is now AiReturn which is a 32-bit integer value. Probably, your compiler will complain if you’re
assigning this value to 16-bit variables as was common in older API versions. This can temporarily
be ignored, as the values returned by all functions are below 0xFFFF. It is recommended to take
care of this compiler warnings, as values higher than 0xFFFF are possible in future. Please note
that some of the individual error values have also changed.

• ApiCmdIni The default mode parameter 0 which initialized the whole board was changed to be
equal to the read only mode. This function should no longer be called and is now obsolete. If you
need any of the information provided by the information struct, please consider using ApiCmdSys-
GetBoardInfo instead.

In the very rare case that you need to switch back to the old behavior you can use API_INIT_MODE_ALL
as a fall back.

• ApiCmdReset The mode API_RESET_ONLY_IF_NOT_ALREADY_RESETTED was removed. To
detect if the board is already opened and initialized by another application please use ApiGet-
DriverInfo/ul_OpenConnections. This function returns the number of independent tasks that have
an open handle to the device. If the value is greater than one some other task is already working
on the device and some functions should be used with care. See the sample main function for a
example on how to utilize this feature.

Please note that this function does not count instances of threads that share a common library
instance.

• ApiInstIntHandler The function signature for the callback registered with ApiInstIntHandler changed.
When using this function in an application, the registered callback implementation must be adapted
manually. We change the calling convention of the callback from stdcall to cdecl. The struct pa-
rameter with the interrupt information was change from pass by value to pass by pointer.

See ls_interrupt_sample.c for a example implementation.

90 MIL-STD-1553 - V24.18.0

MIGRATING FROM API 22 TO API 24

• ApiProvideScopeBuffers, ApiCreateScopeBufferList The callback function signature for the
scope buffer is now called with cdecl calling convention. When using this function in an application,
the registered callback implementation must be adapted manually.

• ApiCmdGetIrig/ApiCmdSetIrig The structure representing the IRIG time has been changed. The
external/internal status and control has been separated into the additional functions ApiCmdGe-
tIrigStatus/ApiCmdSetIrigStatus.

• ApiCmdDataQueueOpen The prototype of this function has been simplified. The ids for the differ-
ent queues have been unified. The appropriate buffering mode for client or server is now detected
internally. The function returns the size of the buffer which is accessed with ApiCmdDataQue-
ueRead.

• ApiCmdDataQueueRead The prototype of this function has been simplified.

• ApiCmdDataQueueControl,ApiCmdDataQueueFlush,ApiCmdDataQueueClose The prototype
of this functions has been simplified. All struct parameters are now direct input values of the func-
tion.

11.3 Obsolete Function Prototypes

The following functions have been declared as obsolete and might be removed by a future incompatible
BSP.

• ApiOpen Please consider using ApiOpenEx instead.

• ApiCmdIni Please consider using ApiCmdSysGetBoardInfo instead.

• ApiReadBSPVersion The version scheme of several software components has been changed
and is not fully supported by this function. New devices have versions that are not returned by this
function. Please use ApiReadVersion or ApiReadAllVersions instead.

• ApiReadBSPVersionEx The version scheme of several software components has been changed
and is not fully supported by this function. New devices have versions that are not returned by this
function. Please use ApiReadVersion or ApiReadAllVersions instead.

• ApiReadRecData Please use the Data Queue recording functions instead.

• ApiCmdBMStackEntryFind,ApiCmdBMStackEntryRead,ApiCmdBMStackpRead Please use
the Data Queue recording functions instead.

• ApiCmdBMIniMsgFltRec,ApiCmdBMReadMsgFltRec Please use the Data Queue recording
functions instead. If message filtering on the device is required, the Data Queue recording can
be combined with FW level filtering. See ApiCmdBMFilterIni in the reference manual.

11.4 Removed Memory Functions With Replacements

This functions have been used to access the board memory. Please use the functions ApiReadMemData
and ApiWriteMemData with API_MEMTYPE_GLOBAL instead.

MIL-STD-1553 - V24.18.0 91

MIGRATING FROM API 22 TO API 24

• ApiCmdRamRead

• ApiCmdRamReadByte

• ApiCmdRamReadLWord

• ApiCmdRamReadWord

• ApiCmdRamWrite

• ApiCmdRamWriteByte

• ApiCmdRamWriteLWord

• ApiCmdRamWriteWord

11.5 Removed Functions Without Replacements

This functions have been removed and there is no functional replacement.

• ApiGetTcomStatus

• ApiSetTgEmul/ApiGetTgEmul

• ApiPrintfOnServer

• ApiGetOpenErr

• ApiCmdCalTransCon

• ApiCmdTimerIntrCheck

• ApiCmdBiuIntrCheck

92 MIL-STD-1553 - V24.18.0

List of Abbreviations

List of Abbreviations

DQ Data Queue

MIL-STD-1553 - V24.18.0 I

LIST OF FIGURES

LIST OF FIGURES

2.0.0-I Example Bus Configuration... 4
2.0.0-II Word Formats ... 5
2.0.0-III Information Transfer Formats .. 6
2.0.0-IV Broadcast Information Transfer Formats ... 7
3.0.0-I PBA.pro System Overview.. 9
3.5.2-I Major/Minor Frame Scheduling Diagram... 17
5.1.0-I Buffer and Header ID connection.. 29
5.1.2-I Example Buffer and Header ID usage .. 31
6.3.1-I Data Generation Functions Diagram... 41
6.3.1-II BC Transfer Data Generation via FIFO or Dataset Buffers ... 42
6.6.0-I Minor Frame Timing Control Diagram ... 50
6.6.0-II Minor Frames within the Major Frame using Autoframing... 51
6.6.0-III Minor Frames within the Major Frame using External Pulse... 51
6.6.0-IV Minor Frames within the Major Frame using External Pulse and a Wait Instruction 52
6.8.1-I Status Word Exception Mask .. 56

II MIL-STD-1553 - V24.18.0

	Introduction
	General
	How this Programmer's Guide is organized
	AIM Document Family

	MIL-STD-1553 Specification Overview
	AIM 1553 Bus Interface Module Overview
	Hardware Architecture
	Software Architecture
	API S/W Library Structure/Content
	Application Program Structure Overview
	MIL-STD-1553 Transfers and Frame Structure Overview

	Library Administration And System Programming
	Initialization
	Termination
	Getting Information
	Symmetric Multiprocessing
	Defining MIL-STD-1553 Protocol
	Defining External Connectivity
	Configuring Response Timeout
	Utilizing IRIG-B
	Interrupt Handling
	Debugging
	GPIO Programming

	Simulation Buffer Programming
	1553 Buffer Header Ids and Buffer Ids
	1553 Buffer Data Consistency

	Bus Controller Programming
	Initializing the BC
	Defining 1553 Transfers
	BC Transmit and Receive Message Data Word Generation/Processing
	BC Transfers with Error Injection
	Defining Minor/Major Frames Content & Timing
	Starting the Bus Controller
	Acyclic 1553 Transfers
	BC Interrupt Programming
	Status Word Exception Handling

	Remote Terminal Programming
	Initializing the RT
	Defining RT Subaddress/Mode Code for Communication with the BC
	RT Transfers Error Injection
	RT Interrupt Programming

	Bus Monitor Programming
	Additional Bus Monitor Trigger
	Additional Bus Monitor Filter
	Recording Using Queuing
	Recording Using Data Queue Recording
	1553 Data Queue Recording
	Format of Data Stored in the 1553 Monitor Buffer

	Replay Programming
	Troubleshooting
	Checking Return Values
	Using Counters
	Monitoring the Bus Traffic
	Contacting Support

	Migrating from API 22 to API 24
	Library Interface
	Incompatible Function Prototypes
	Obsolete Function Prototypes
	Removed Memory Functions With Replacements
	Removed Functions Without Replacements

	List of Abbreviations
	List of Figures

